dc.contributorUniversidade Federal do Rio de Janeiro (UFRJ)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T02:16:50Z
dc.date.accessioned2022-12-19T21:08:56Z
dc.date.available2020-12-12T02:16:50Z
dc.date.available2022-12-19T21:08:56Z
dc.date.created2020-12-12T02:16:50Z
dc.date.issued2020-07-01
dc.identifierMathematics, v. 8, n. 7, 2020.
dc.identifier2227-7390
dc.identifierhttp://hdl.handle.net/11449/200816
dc.identifier10.3390/math8071161
dc.identifier2-s2.0-85088591847
dc.identifier8300322452622467
dc.identifier0000-0002-6823-4204
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5381450
dc.description.abstractWe study an energy-dependent potential related to the Rosen-Morse potential. We give in closed-form the expression of a system of eigenfunctions of the Schrodinger operator in terms of a class of functions associated to a family of hypergeometric para-orthogonal polynomials on the unit circle. We also present modified relations of orthogonality and an asymptotic formula. Consequently, bound state solutions can be obtained for some values of the parameters that define the model. As a particular case, we obtain the symmetric trigonometric Rosen-Morse potential for which there exists an orthogonal basis of eigenstates in a Hilbert space. By comparing the existent solutions for the symmetric trigonometric Rosen-Morse potential, an identity involving Gegenbauer polynomials is obtained.
dc.languageeng
dc.relationMathematics
dc.sourceScopus
dc.subjectAsymptotic expansions
dc.subjectEnergy-dependent potential
dc.subjectHypergeometric functions
dc.subjectOrdinary differential equations
dc.subjectOrthogonal polynomials
dc.subjectSchrödinger equation
dc.titleOn an energy-dependent quantum system with solutions in terms of a class of hypergeometric para-orthogonal polynomials on the unit circle
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución