dc.contributorUniversity of Western São Paulo (UNOESTE)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorChemi Engenharia de Materiais
dc.contributorUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2020-12-12T02:02:37Z
dc.date.accessioned2022-12-19T21:02:41Z
dc.date.available2020-12-12T02:02:37Z
dc.date.available2022-12-19T21:02:41Z
dc.date.created2020-12-12T02:02:37Z
dc.date.issued2020-03-01
dc.identifierFuture Microbiology, v. 15, n. 4, p. 273-285, 2020.
dc.identifier1746-0921
dc.identifier1746-0913
dc.identifierhttp://hdl.handle.net/11449/200287
dc.identifier10.2217/fmb-2019-0182
dc.identifier2-s2.0-85083369822
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5380921
dc.description.abstractAim: To assemble, characterize and assess the antifungal effects of a new fluconazole (FLZ)-carrier nanosystem. Materials & methods: The nanosystem was prepared by loading FLZ on chitosan (CS)-coated iron oxide nanoparticles (IONPs). Antifungal effects were evaluated on planktonic cells (by minimum inhibitory concentration determination) and on biofilms (by quantification of cultivable cells, total biomass, metabolism and extracellular matrix) of Candida albicans and Candida glabrata. Results: Characterization results ratified the formation of a nanosystem (<320 nm) with FLZ successfully embedded. IONPs-CS-FLZ nanosystem reduced minimum inhibitory concentration values and, in general, showed similar antibiofilm effects compared with FLZ alone. Conclusion: IONPs-CS-FLZ nanosystem was more effective than FLZ mainly in inhibiting Candida planktonic cells. This nanocarrier has potential to fight fungal infections.
dc.languageeng
dc.relationFuture Microbiology
dc.sourceScopus
dc.subjectbiofilms
dc.subjectCandida
dc.subjectchitosan
dc.subjectfluconazole
dc.subjectiron oxide nanoparticles
dc.titleAssembly and antifungal effect of a new fluconazole-carrier nanosystem
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución