dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2020-12-12T01:58:56Z
dc.date.accessioned2022-12-19T21:01:02Z
dc.date.available2020-12-12T01:58:56Z
dc.date.available2022-12-19T21:01:02Z
dc.date.created2020-12-12T01:58:56Z
dc.date.issued2020-01-01
dc.identifierDifferential Equations and Dynamical Systems.
dc.identifier0974-6870
dc.identifier0971-3514
dc.identifierhttp://hdl.handle.net/11449/200147
dc.identifier10.1007/s12591-018-0439-1
dc.identifier2-s2.0-85081330630
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5380781
dc.description.abstractWe consider piecewise smooth vector fields (PSVF) defined in open sets M⊆ Rn with switching manifold being a smooth surface Σ. We assume that M\ Σ contains exactly two connected regions, namely Σ + and Σ -. Then, the PSVF are given by pairs X= (X+, X-) , with X= X+ in Σ + and X= X- in Σ -. A regularization of X is a 1-parameter family of smooth vector fields Xε, ε> 0 , satisfying that Xε converges pointwise to X on M\ Σ , when ε→ 0. Inspired by the Fenichel Theory, the sliding and sewing dynamics on the discontinuity locus Σ can be defined as some sort of limit of the dynamics of a nearby smooth regularization Xε. While the linear regularization requires that for every ε> 0 the regularized field Xε is in the convex combination of X+ and X-, the nonlinear regularization requires only that Xε is in a continuous combination of X+ and X-. We prove that, for both cases, the sliding dynamics on Σ is determined by the reduced dynamics on the critical manifold of a singular perturbation problem. We apply our techniques in the description of the nonlinear regularization of normal forms of PSVF in R2 and in R3.
dc.languageeng
dc.relationDifferential Equations and Dynamical Systems
dc.sourceScopus
dc.subjectNon-smooth vector fields
dc.subjectRegularization
dc.subjectSingular perturbation
dc.subjectSliding vector fields
dc.subjectVector fields
dc.titleNonlinear Sliding of Discontinuous Vector Fields and Singular Perturbation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución