dc.contributorBaylor University
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorShanghai Jiao Tong University
dc.date.accessioned2020-12-12T01:57:19Z
dc.date.accessioned2022-12-19T21:00:17Z
dc.date.available2020-12-12T01:57:19Z
dc.date.available2022-12-19T21:00:17Z
dc.date.created2020-12-12T01:57:19Z
dc.date.issued2020-03-01
dc.identifierResults in Mathematics, v. 75, n. 1, 2020.
dc.identifier1420-9012
dc.identifier1422-6383
dc.identifierhttp://hdl.handle.net/11449/200085
dc.identifier10.1007/s00025-020-1167-8
dc.identifier2-s2.0-85079722002
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5380719
dc.description.abstractIn a recent paper (Martínez-Finkelshtein et al. in Proc Am Math Soc 147:2625–2640, 2019) some interesting results were obtained concerning complementary Romanovski–Routh polynomials, a class of orthogonal polynomials on the unit circle and extended regular Coulomb wave functions. The class of orthogonal polynomials here are generalization of the class of circular Jacobi polynomials. In the present paper, in addition to looking at some further properties of the complementary Romanovski–Routh polynomials and associated orthogonal polynomials on the unit circle, behaviour of the zeros of these extended Coulomb wave functions are also studied.
dc.languageeng
dc.relationResults in Mathematics
dc.sourceScopus
dc.subjectorthogonal polynomials on the unit circle
dc.subjectpara-orthogonal polynomials
dc.subjectRomanovski–Routh polynomials
dc.subjectsecond order differential equations
dc.titleComplementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución