dc.contributorUniversité Pierre et Marie Curie
dc.contributorSUNY
dc.contributorFederal University of Rio Grande do Norte
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T01:49:02Z
dc.date.accessioned2022-12-19T20:56:41Z
dc.date.available2020-12-12T01:49:02Z
dc.date.available2022-12-19T20:56:41Z
dc.date.created2020-12-12T01:49:02Z
dc.date.issued2019-11-01
dc.identifierJournal of High Energy Physics, v. 2019, n. 11, 2019.
dc.identifier1029-8479
dc.identifier1126-6708
dc.identifierhttp://hdl.handle.net/11449/199777
dc.identifier10.1007/JHEP11(2019)172
dc.identifier2-s2.0-85076154558
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5380411
dc.description.abstractWe investigate the hexagon formalism in the planar 4d conformal fishnet theory. This theory arises from N = 4 SYM by a deformation that preserves both conformal symmetry and integrability. Based on this relation, we obtain the hexagon form factors for a large class of states, including the BMN vacuum, some excited states, and the Lagrangian density. We apply these form factors to the computation of several correlators and match the results with direct Feynman diagrammatic calculations. We also study the renormalisation of the hexagon form factor expansion for a family of diagonal structure constants and test the procedure at higher orders through comparison with a known universal formula for the Lagrangian insertion.
dc.languageeng
dc.relationJournal of High Energy Physics
dc.sourceScopus
dc.subjectConformal Field Theory
dc.subjectIntegrable Field Theories
dc.subjectNonperturbative Effects
dc.titleHexagons and correlators in the fishnet theory
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución