dc.contributorIAA-CSIC
dc.contributorUniversité de Paris
dc.contributorLaboratório Interinstitucional de E-Astronomia - LIneA
dc.contributorFederal University of Technology-Paraná (UTFPR / DAFIS)
dc.contributorObservatório Nacional/MCTIC
dc.contributorUniversity of Central Florida
dc.contributor'G. Galilei' Universita Degli Studi di Padova
dc.contributorINAF - Osservatorio Astronomico di Padova
dc.contributorLAM
dc.contributorINAF - Osservatorio di Astrofisica e Scienza Dello Spazio
dc.contributorSchiaparelli Astronomical Observatory
dc.contributorAstronomical Observatory San Marcello Pistoiese CARA Project
dc.contributorCrni Vrh Observatory
dc.contributorUniversity of Ljubljana
dc.contributorOsservatorio Astronomico di Monte Agliale
dc.contributor55 Impasse de la Marjolaine
dc.contributorObservatorio Astronomico Iota-Scorpii
dc.contributor1075 Avenue Saint Philippe
dc.contributorObservatoire de la Côte d'Azur
dc.contributorGnosca Observatory
dc.contributorOsservatorio Astronomico di Tavolaia
dc.contributor63 Boulevard de Brandebourg
dc.contributorUPMC Univ Paris 06
dc.contributorUniversidade Federal do Rio de Janeiro (UFRJ)
dc.contributorInternational Occultation Timing Association - European Section (IOTA-ES)
dc.contributorObservatoire de Geneve
dc.contributorMax Planck Institut für Extraterrestrische Physik (MPE)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorInstitute of Planetary Research
dc.contributorUniversidad de Alicante
dc.contributorUnversidad de Alicante
dc.contributorFaculty of Electrical Engineering and Computing
dc.contributorE.O. Lawrence Berkeley National Laboratory
dc.contributorAstronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA)
dc.contributorResearch Centre for Astronomy and Earth Sciences
dc.contributorInstitute of Physics
dc.contributorSlovak Academy of Sciences
dc.contributorMTA-ELTE Exoplanet Research Group
dc.contributorELTE Gothard Astrophysical Observatory
dc.contributorNational Observatory of Athens
dc.contributorUniversity of Crete
dc.contributorFaculty of Science
dc.contributorA. Mickiewicz University
dc.contributorNunki Observatory
dc.contributorEllinogermaniki Agogi Observatory
dc.contributorUniversidad de Valencia
dc.contributorCentro de Estudios de Física Del Cosmos de Aragón
dc.contributorUniversidad de la Laguna
dc.contributorAgrupació Astronómica de Sabadell
dc.contributorOsservatorio Salvatore di Giacomo
dc.date.accessioned2020-12-12T01:33:21Z
dc.date.accessioned2022-12-19T20:49:56Z
dc.date.available2020-12-12T01:33:21Z
dc.date.available2022-12-19T20:49:56Z
dc.date.created2020-12-12T01:33:21Z
dc.date.issued2020-07-01
dc.identifierAstronomy and Astrophysics, v. 639.
dc.identifier1432-0746
dc.identifier0004-6361
dc.identifierhttp://hdl.handle.net/11449/199198
dc.identifier10.1051/0004-6361/202038046
dc.identifier2-s2.0-85088877729
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5379832
dc.description.abstractContext. Deriving physical properties of trans-Neptunian objects is important for the understanding of our Solar System. This requires observational efforts and the development of techniques suitable for these studies. Aims. Our aim is to characterize the large trans-Neptunian object (TNO) 2002 TC302. Methods. Stellar occultations offer unique opportunities to determine key physical properties of TNOs. On 28 January 2018, 2002 TC302 occulted a mv ∼ 15.3 star with designation 593-005847 in the UCAC4 stellar catalog, corresponding to Gaia source 130957813463146112. Twelve positive occultation chords were obtained from Italy, France, Slovenia, and Switzerland. Also, four negative detections were obtained near the north and south limbs. This represents the best observed stellar occultation by a TNO other than Pluto in terms of the number of chords published thus far. From the 12 chords, an accurate elliptical fit to the instantaneous projection of the body can be obtained that is compatible with the near misses. Results. The resulting ellipse has major and minor axes of 543 ± 18 km and 460 ± 11 km, respectively, with a position angle of 3 ± 1 degrees for the minor axis. This information, combined with rotational light curves obtained with the 1.5 m telescope at Sierra Nevada Observatory and the 1.23 m telescope at Calar Alto observatory, allows us to derive possible three-dimensional shapes and density estimations for the body based on hydrostatic equilibrium assumptions. The effective diameter in equivalent area is around 84 km smaller than the radiometrically derived diameter using thermal data from Herschel and Spitzer Space Telescopes. This might indicate the existence of an unresolved satellite of up to ∼300 km in diameter, which is required to account for all the thermal flux, although the occultation and thermal diameters are compatible within their error bars given the considerable uncertainty of the thermal results. The existence of a potential satellite also appears to be consistent with other ground-based data presented here. From the effective occultation diameter combined with absolute magnitude measurements we derive a geometric albedo of 0.147 ± 0.005, which would be somewhat smaller if 2002 TC302 has a satellite. The best occultation light curves do not show any signs of ring features or any signatures of a global atmosphere.
dc.languageeng
dc.relationAstronomy and Astrophysics
dc.sourceScopus
dc.subjectAstrometry
dc.subjectKuiper belt objects: individual: 2002 TC302
dc.subjectKuiper belt: general
dc.subjectOccultations
dc.subjectTechniques: photometric
dc.titleThe large trans-Neptunian object 2002 TC302from combined stellar occultation, photometry, and astrometry data
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución