dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2020-12-12T01:26:50Z
dc.date.accessioned2022-12-19T20:47:09Z
dc.date.available2020-12-12T01:26:50Z
dc.date.available2022-12-19T20:47:09Z
dc.date.created2020-12-12T01:26:50Z
dc.date.issued2020-01-01
dc.identifierJournal of Dynamics and Differential Equations.
dc.identifier1572-9222
dc.identifier1040-7294
dc.identifierhttp://hdl.handle.net/11449/198962
dc.identifier10.1007/s10884-020-09855-2
dc.identifier2-s2.0-85086154075
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5379596
dc.description.abstractIn this paper we focus on a class of symmetric vector fields in the context of singularly perturbed fast-slow dynamical systems. Our main question is to know how symmetry properties of a dynamical system are affected by singular perturbations. In addition, our approach uses tools in geometric singular perturbation theory [8], which address the persistence of normally hyperbolic compact manifolds. We analyse the persistence of such symmetry properties when the singular perturbation parameter ε is positive and small enough, and study the existing relations between symmetries of the singularly perturbed system and symmetries of the limiting systems, which are obtained from the limit ε→ 0 in the fast and slow time scales. This approach is applied to a number of examples.
dc.languageeng
dc.relationJournal of Dynamics and Differential Equations
dc.sourceScopus
dc.subjectFast-slow systems
dc.subjectReversible vector fields
dc.subjectSymmetries
dc.titleGeometric Singular Perturbation Theory for Systems with Symmetry
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución