dc.contributorUniversidade Federal de Itajubá
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T01:17:56Z
dc.date.accessioned2022-12-19T20:43:08Z
dc.date.available2020-12-12T01:17:56Z
dc.date.available2022-12-19T20:43:08Z
dc.date.created2020-12-12T01:17:56Z
dc.date.issued2020-01-01
dc.identifierJournal of Dynamical and Control Systems.
dc.identifier1573-8698
dc.identifier1079-2724
dc.identifierhttp://hdl.handle.net/11449/198626
dc.identifier10.1007/s10883-020-09478-2
dc.identifier2-s2.0-85081560260
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5379260
dc.description.abstractThe aim of this article is twofold. Firstly, we study the existence of limit cycles in a family of piecewise smooth vector fields corresponding to an unfolding of an invisible fold–fold singularity. More precisely, given a positive integer k, we prove that this family has exactly k hyperbolic crossing limit cycles in a suitable neighborhood of this singularity. Secondly, we provide a complete study relating the existence and stability of these crossing limit cycles with the limit cycles of the family of smooth vector fields obtained by the regularization method. This relationship is obtained by studying the equivalence between the signs of the Lyapunov coefficients of the family of piecewise smooth vector fields and the ones of its regularization.
dc.languageeng
dc.relationJournal of Dynamical and Control Systems
dc.sourceScopus
dc.subjectBifurcation
dc.subjectFold–fold singularity
dc.subjectHamiltonian vector field
dc.subjectLimit cycle
dc.subjectPiecewise smooth vector field
dc.subjectRegularization
dc.titleLimit Cycles Bifurcating from an Invisible Fold–Fold in Planar Piecewise Hamiltonian Systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución