dc.contributorUniversidade Federal de Itajubá
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T01:07:49Z
dc.date.accessioned2022-12-19T20:38:50Z
dc.date.available2020-12-12T01:07:49Z
dc.date.available2022-12-19T20:38:50Z
dc.date.created2020-12-12T01:07:49Z
dc.date.issued2020-04-01
dc.identifierJournal of Mathematical Analysis and Applications, v. 484, n. 1, 2020.
dc.identifier1096-0813
dc.identifier0022-247X
dc.identifierhttp://hdl.handle.net/11449/198256
dc.identifier10.1016/j.jmaa.2019.123692
dc.identifier2-s2.0-85076222955
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5378890
dc.description.abstractWe study the stability of an invisible fold-fold singularity of planar piecewise smooth Hamiltonian vector fields by computing some kind of Lyapunov coefficients. We obtain the general expressions for the first five Lyapunov coefficients. As a consequence, the bifurcation diagrams, illustrating the number, types and positions of the bifurcating small amplitude crossing limit cycles for these vector fields, are determined.
dc.languageeng
dc.relationJournal of Mathematical Analysis and Applications
dc.sourceScopus
dc.subjectBifurcation
dc.subjectFold-fold singularity
dc.subjectHamiltonian vector field
dc.subjectLimit cycle
dc.subjectPiecewise smooth vector field
dc.titleLyapunov coefficients for an invisible fold-fold singularity in planar piecewise Hamiltonian systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución