dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.contributor | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2020-12-12T00:54:56Z | |
dc.date.accessioned | 2022-12-19T20:35:19Z | |
dc.date.available | 2020-12-12T00:54:56Z | |
dc.date.available | 2022-12-19T20:35:19Z | |
dc.date.created | 2020-12-12T00:54:56Z | |
dc.date.issued | 2020-05-01 | |
dc.identifier | Journal of Pure and Applied Algebra, v. 224, n. 5, 2020. | |
dc.identifier | 0022-4049 | |
dc.identifier | http://hdl.handle.net/11449/197950 | |
dc.identifier | 10.1016/j.jpaa.2019.106221 | |
dc.identifier | 2-s2.0-85072542102 | |
dc.identifier | 7916375574050821 | |
dc.identifier | 0000-0002-4806-3399 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5378584 | |
dc.description.abstract | In this paper we propose a framework to construct algebraic lattices in dimensions 4n via ideals from maximal orders of a quaternion algebra whose center is a totally real number field. For n=1,2,3,4 and 6 it was possible to construct rotated versions of the densest lattices in their dimensions, D4,E8,K12,Λ16 and Λ24. We also present a family of lattices in dimension 2r from A=(−1,−1)Q(ζ2r +ζ2r −1) and a characterization of a maximal quaternion order of A by using the Chebyshev polynomials. | |
dc.language | eng | |
dc.relation | Journal of Pure and Applied Algebra | |
dc.source | Scopus | |
dc.subject | Center density | |
dc.subject | Lattices | |
dc.subject | Maximal orders | |
dc.subject | Quaternion algebras | |
dc.subject | Space-time codes | |
dc.title | Algebraic construction of lattices via maximal quaternion orders | |
dc.type | Artículos de revistas | |