dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2020-12-12T00:54:56Z
dc.date.accessioned2022-12-19T20:35:19Z
dc.date.available2020-12-12T00:54:56Z
dc.date.available2022-12-19T20:35:19Z
dc.date.created2020-12-12T00:54:56Z
dc.date.issued2020-05-01
dc.identifierJournal of Pure and Applied Algebra, v. 224, n. 5, 2020.
dc.identifier0022-4049
dc.identifierhttp://hdl.handle.net/11449/197950
dc.identifier10.1016/j.jpaa.2019.106221
dc.identifier2-s2.0-85072542102
dc.identifier7916375574050821
dc.identifier0000-0002-4806-3399
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5378584
dc.description.abstractIn this paper we propose a framework to construct algebraic lattices in dimensions 4n via ideals from maximal orders of a quaternion algebra whose center is a totally real number field. For n=1,2,3,4 and 6 it was possible to construct rotated versions of the densest lattices in their dimensions, D4,E8,K12,Λ16 and Λ24. We also present a family of lattices in dimension 2r from A=(−1,−1)Q(ζ2r +ζ2r −1) and a characterization of a maximal quaternion order of A by using the Chebyshev polynomials.
dc.languageeng
dc.relationJournal of Pure and Applied Algebra
dc.sourceScopus
dc.subjectCenter density
dc.subjectLattices
dc.subjectMaximal orders
dc.subjectQuaternion algebras
dc.subjectSpace-time codes
dc.titleAlgebraic construction of lattices via maximal quaternion orders
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución