dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorStockholm Univ
dc.date.accessioned2020-12-10T19:57:18Z
dc.date.accessioned2022-12-19T20:21:38Z
dc.date.available2020-12-10T19:57:18Z
dc.date.available2022-12-19T20:21:38Z
dc.date.created2020-12-10T19:57:18Z
dc.date.issued2020-04-01
dc.identifierPotential Analysis. Dordrecht: Springer, v. 52, n. 4, p. 645-659, 2020.
dc.identifier0926-2601
dc.identifierhttp://hdl.handle.net/11449/196824
dc.identifier10.1007/s11118-018-9754-y
dc.identifierWOS:000528380600005
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5377461
dc.description.abstractIn this note we extend the classical relation between the equilibrium configurations of unit movable point charges in a plane electrostatic field created by these charges together with some fixed point charges and the polynomial solutions of a corresponding Lame differential equation. Namely, we find similar relation between the equilibrium configurations of unit movable charges subject to a certain type of rational or polynomial constraint and polynomial solutions of a corresponding degenerate Lame equation, see details below. In particular, the standard linear differential equations satisfied by the classical Hermite and Laguerre polynomials belong to this class. Besides these two classical cases, we present a number of other examples including some relativistic orthogonal polynomials and linear differential equations satisfied by those.
dc.languageeng
dc.publisherSpringer
dc.relationPotential Analysis
dc.sourceWeb of Science
dc.subjectElectrostatic equilibrium
dc.subjectLame differential equation
dc.titleElectrostatic Problems with a Rational Constraint and Degenerate Lame Equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución