dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T19:00:38Z
dc.date.accessioned2022-12-19T20:11:13Z
dc.date.available2020-12-10T19:00:38Z
dc.date.available2022-12-19T20:11:13Z
dc.date.created2020-12-10T19:00:38Z
dc.date.issued2010-01-01
dc.identifier49th Ieee Conference On Decision And Control (cdc). New York: Ieee, p. 6277-6280, 2010.
dc.identifier0743-1546
dc.identifierhttp://hdl.handle.net/11449/195982
dc.identifier10.1109/CDC.2010.5717398
dc.identifierWOS:000295049107023
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5376618
dc.description.abstractThe quadratic distance function on a Riemannian manifold can be expressed in terms of the position vector, which in turn can be constructed using geodesic normal coordinates through consideration of the exponential map. The formulas for the derivative of the distance are useful to study Lyapunov stability of dynamical systems, and to build cost functions for optimal control and estimation.
dc.languageeng
dc.publisherIeee
dc.relation49th Ieee Conference On Decision And Control (cdc)
dc.sourceWeb of Science
dc.subjectRiemannian geometry
dc.subjectgeodesic distance
dc.subjectLyapunov functions
dc.titleSome properties of the Riemannian distance function and the position vector X, with applications to the construction of Lyapunov functions
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución