dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Federal de Pernambuco (UFPE)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T17:37:40Z
dc.date.accessioned2022-12-19T20:05:38Z
dc.date.available2020-12-10T17:37:40Z
dc.date.available2022-12-19T20:05:38Z
dc.date.created2020-12-10T17:37:40Z
dc.date.issued2020-07-19
dc.identifierCommunications In Statistics-theory And Methods. Philadelphia: Taylor & Francis Inc, 28 p., 2020.
dc.identifier0361-0926
dc.identifierhttp://hdl.handle.net/11449/195528
dc.identifier10.1080/03610926.2020.1795681
dc.identifierWOS:000550705600001
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5376165
dc.description.abstractWe propose two new regressions based on the generalized odd log-logistic log-normal distribution allowing for positive and negative skewness to model bimodal data. The first one is the parametric regression and the second one is an additive partial linear regression. The new regressions aim to estimate the linear and non-linear effects of covariables on the response variable and generalize some existing regressions in the literature. For both cases, the model parameters are estimated by the methods of maximum likelihood and maximum penalized likelihood. In particular, a model check based on the quantile residuals is used to select the appropriate covariables. We reanalyze two data sets, one for each proposed regression.
dc.languageeng
dc.publisherTaylor & Francis Inc
dc.relationCommunications In Statistics-theory And Methods
dc.sourceWeb of Science
dc.subjectBimodal data
dc.subjectclimatological data
dc.subjectcubic smoothing splines
dc.subjectpenalized log-likelihood
dc.titleThe parametric and additive partial linear regressions based on the generalized odd log-logistic log-normal distribution
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución