dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorInst Butantan
dc.contributorUniversidade Federal de Pernambuco (UFPE)
dc.date.accessioned2020-12-10T17:35:55Z
dc.date.accessioned2022-12-19T20:05:00Z
dc.date.available2020-12-10T17:35:55Z
dc.date.available2022-12-19T20:05:00Z
dc.date.created2020-12-10T17:35:55Z
dc.date.issued2020-06-30
dc.identifierEnvironmental And Ecological Statistics. Dordrecht: Springer, v. 27, n. 3, p. 467-489, 2020.
dc.identifier1352-8505
dc.identifierhttp://hdl.handle.net/11449/195478
dc.identifier10.1007/s10651-020-00453-5
dc.identifierWOS:000544620000001
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5376115
dc.description.abstractWe propose a new extended regression model based on the logarithm of the generalized odd log-logistic Weibull distribution with four systematic components for the analysis of survival data. This regression model can be very useful and could give more realistic fits than other special regression models. We obtain the maximum likelihood estimates of the model parameters for censored data and address influence diagnostics and residual analysis. We prove empirically the importance of the proposed regression by means of a real data set (survival times of the captive snakes) from a study carried out at the Herpetology Laboratory of the Butantan Institute in Sao Paulo, Brazil.
dc.languageeng
dc.publisherSpringer
dc.relationEnvironmental And Ecological Statistics
dc.sourceWeb of Science
dc.subjectCensored data
dc.subjectGeneralized odd log-logistic Weibull
dc.subjectMaximum likelihood
dc.subjectNon-proportional hazard
dc.subjectRegression model
dc.subjectSurvival analysis
dc.titleModelling non-proportional hazard for survival data with different systematic components
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución