dc.contributorUniv Tecnol Fed Parana
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade de São Paulo (USP)
dc.date.accessioned2020-12-10T16:59:51Z
dc.date.accessioned2022-12-19T19:58:36Z
dc.date.available2020-12-10T16:59:51Z
dc.date.available2022-12-19T19:58:36Z
dc.date.created2020-12-10T16:59:51Z
dc.date.issued2019-11-01
dc.identifierMultimedia Tools And Applications. Dordrecht: Springer, v. 78, n. 22, p. 32393-32417, 2019.
dc.identifier1380-7501
dc.identifierhttp://hdl.handle.net/11449/194955
dc.identifier10.1007/s11042-019-07958-7
dc.identifierWOS:000495400000059
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5375592
dc.description.abstractExtracting elements of interest from video frames is a necessary task in many applications, such as those that require replacing the original background. Quality assessment of foreground extraction algorithms is essential to find the best algorithm for a particular application. This paper presents an application-dependent objective metric capable of evaluating the quality of those algorithms by considering user perception. Our metric identifies types of errors that cause the greatest annoyance based on regions of the scene where users tend to keep their attention during videoconference sessions. We demonstrate the efficiency of our metric by evaluating bilayer segmentation algorithms. The results showed that metric is effective compared to others used to evaluate algorithms for videoconferencing systems.
dc.languageeng
dc.publisherSpringer
dc.relationMultimedia Tools And Applications
dc.sourceWeb of Science
dc.subjectObjective metric
dc.subjectSegmentation quality
dc.subjectSegmentation evaluation
dc.subjectVideoconference
dc.titlePAD: a perceptual application-dependent metric for quality assessment of segmentation algorithms
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución