dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T17:18:39Z
dc.date.accessioned2022-12-19T19:08:48Z
dc.date.available2019-10-06T17:18:39Z
dc.date.available2022-12-19T19:08:48Z
dc.date.created2019-10-06T17:18:39Z
dc.date.issued2018-10-01
dc.identifierProceedings - 2018 44th Latin American Computing Conference, CLEI 2018, p. 294-298.
dc.identifierhttp://hdl.handle.net/11449/190600
dc.identifier10.1109/CLEI.2018.00043
dc.identifier2-s2.0-85071121316
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5371638
dc.description.abstractDeep neural networks provide the canvas to create models of millions of parameters to fit distributions involving an equally large number of random variables. The contribution of this study is twofold. First, we introduce a diffraction dataset containing computer-based simulations of a Young's interference experiment. Then, we demonstrate the adeptness of variational autoencoders to learn diffraction patterns and extract a latent feature that correlates with the physical wavelength.
dc.languageeng
dc.relationProceedings - 2018 44th Latin American Computing Conference, CLEI 2018
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectFresnel diffraction
dc.subjectMachine Learning
dc.subjectTensorflow
dc.subjectVariational Autoencoders
dc.titleShedding light on variational autoencoders
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución