dc.contributorUniversidade Federal de São Carlos (UFSCar)
dc.contributorMedizinische Klinik – Klinikum Augsburg III
dc.contributorRegensburg Medical Image Computing (ReMIC)
dc.contributorOTH Regensburg – Regensburg Center of Health Sciences and Technology (RCHST)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T17:02:09Z
dc.date.accessioned2022-12-19T19:02:47Z
dc.date.available2019-10-06T17:02:09Z
dc.date.available2022-12-19T19:02:47Z
dc.date.created2019-10-06T17:02:09Z
dc.date.issued2019-02-01
dc.identifierJournal of Visual Communication and Image Representation, v. 59, p. 475-485.
dc.identifier1095-9076
dc.identifier1047-3203
dc.identifierhttp://hdl.handle.net/11449/190097
dc.identifier10.1016/j.jvcir.2019.01.043
dc.identifier2-s2.0-85061193620
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5371135
dc.description.abstractThe number of patients with Barret's esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett's esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task.
dc.languageeng
dc.relationJournal of Visual Communication and Image Representation
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectBarrett's esophagus
dc.subjectDeep learning
dc.subjectInfinity Restricted Boltzmann Machines
dc.subjectMeta-heuristics
dc.titleBarrett's esophagus analysis using infinity Restricted Boltzmann Machines
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución