dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T16:57:25Z
dc.date.accessioned2022-12-19T19:00:59Z
dc.date.available2019-10-06T16:57:25Z
dc.date.available2022-12-19T19:00:59Z
dc.date.created2019-10-06T16:57:25Z
dc.date.issued2019-02-15
dc.identifierTopology and its Applications, v. 253, p. 17-24.
dc.identifier0166-8641
dc.identifierhttp://hdl.handle.net/11449/189949
dc.identifier10.1016/j.topol.2018.11.026
dc.identifier2-s2.0-85058015013
dc.identifier3186337502957366
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5370987
dc.description.abstractLet G be a group, W a G-set with [G:Gw]=∞ for all w∈W, where Gw denotes the point stabilizer of w∈W. Considering the restriction map resW G:H1(G,Z2G)→∏w∈EH1(Gw,Z2G), where E is a set of orbit representatives for the G-action in W, we define an algebraic invariant denoted by E‾(G,W). In this paper, by using the relation of this invariant with the end e(G) defined by Freudenthal–Hopf–Specker and a Swarup's Theorem about splittings of groups adapted to a family of subgroups, we show, for G finitely generated and W a G-set which falls into many finitely G-orbits, that (G,W) is adapted if, and only if, E‾(G,W)≥2.
dc.languageeng
dc.relationTopology and its Applications
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectCohomology of groups
dc.subjectDuality
dc.subjectEnds of groups
dc.subjectSplitting of groups
dc.titleAdapted splittings for pairs (G,W)
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución