dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T16:29:28Z
dc.date.accessioned2022-12-19T18:50:39Z
dc.date.available2019-10-06T16:29:28Z
dc.date.available2022-12-19T18:50:39Z
dc.date.created2019-10-06T16:29:28Z
dc.date.issued2019-01-01
dc.identifierNumerical Algorithms.
dc.identifier1572-9265
dc.identifier1017-1398
dc.identifierhttp://hdl.handle.net/11449/189090
dc.identifier10.1007/s11075-019-00714-w
dc.identifier2-s2.0-85065388307
dc.identifier8300322452622467
dc.identifier0000-0002-6823-4204
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5370128
dc.description.abstractWe consider the theoretical and numerical aspects of the quadrature rules associated with a sequence of polynomials generated by a special R II recurrence relation. We also look into some methods for generating the nodes (which lie on the real line) and the positive weights of these quadrature rules. With a simple transformation, these quadrature rules on the real line also lead to certain positive quadrature rules of highest algebraic degree of precision on the unit circle. This way, we also introduce new approaches to evaluate the nodes and weights of these specific quadrature rules on the unit circle.
dc.languageeng
dc.relationNumerical Algorithms
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectOrthogonal polynomials on the unit circle
dc.subjectQuadrature rules
dc.subjectR II type recurrence relation
dc.titleQuadrature rules from a R I I type recurrence relation and associated quadrature rules on the unit circle
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución