dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T16:17:14Z
dc.date.accessioned2022-12-19T18:46:17Z
dc.date.available2019-10-06T16:17:14Z
dc.date.available2022-12-19T18:46:17Z
dc.date.created2019-10-06T16:17:14Z
dc.date.issued2019-06-11
dc.identifierNumerical Functional Analysis and Optimization, v. 40, n. 8, p. 867-887, 2019.
dc.identifier1532-2467
dc.identifier0163-0563
dc.identifierhttp://hdl.handle.net/11449/188723
dc.identifier10.1080/01630563.2018.1562469
dc.identifier2-s2.0-85061443593
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5369761
dc.description.abstractIt is well-known in optimal control theory that the maximum principle, in general, furnishes only necessary optimality conditions for an admissible process to be an optimal one. It is also well-known that if a process satisfies the maximum principle in a problem with convex data, the maximum principle turns to be likewise a sufficient condition. Here an invexity type condition for state constrained optimal control problems is defined and shown to be a sufficient optimality condition. Further, it is demonstrated that all optimal control problems where all extremal processes are optimal necessarily obey this invexity condition. Thus optimal control problems which satisfy such a condition constitute the most general class of problems where the maximum principle becomes automatically a set of sufficient optimality conditions.
dc.languageeng
dc.relationNumerical Functional Analysis and Optimization
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectGeneralized convexity
dc.subjectoptimal control
dc.subjectstate constraints
dc.subjectsufficient optimality conditions
dc.titleSufficient Optimality Conditions for Optimal Control Problems with State Constraints
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución