dc.contributor | Science and Technology of São Paulo | |
dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.contributor | University of Colorado | |
dc.date.accessioned | 2019-10-06T15:42:53Z | |
dc.date.accessioned | 2022-12-19T18:33:31Z | |
dc.date.available | 2019-10-06T15:42:53Z | |
dc.date.available | 2022-12-19T18:33:31Z | |
dc.date.created | 2019-10-06T15:42:53Z | |
dc.date.issued | 2019-08-03 | |
dc.identifier | International Journal of Control, v. 92, n. 8, p. 1778-1784, 2019. | |
dc.identifier | 1366-5820 | |
dc.identifier | 0020-7179 | |
dc.identifier | http://hdl.handle.net/11449/187647 | |
dc.identifier | 10.1080/00207179.2017.1410575 | |
dc.identifier | 2-s2.0-85065517078 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5368685 | |
dc.description.abstract | This paper proposes a new approach for the discrete-time interval optimal control problem. The optimal interval solution of discrete-time interval optimal control problem is obtained using the single-level constrained interval arithmetic coupled with a dynamic programming technique. Moreover, the optimal interval solution contains the real-valued optimal solutions. To illustrate an optimal solution for the interval case, we use the minimax regret criterion in the interval inventory control problem we present. | |
dc.language | eng | |
dc.relation | International Journal of Control | |
dc.relation | 193431 | |
dc.rights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | generalised uncertainty | |
dc.subject | interval dynamic programming | |
dc.subject | interval mathematical models | |
dc.subject | Interval optimal control problem | |
dc.subject | minimax regret criterion | |
dc.title | Discrete-time interval optimal control problem | |
dc.type | Artículos de revistas | |