dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade de São Paulo (USP)
dc.date.accessioned2019-10-06T15:39:45Z
dc.date.accessioned2022-12-19T18:32:18Z
dc.date.available2019-10-06T15:39:45Z
dc.date.available2022-12-19T18:32:18Z
dc.date.created2019-10-06T15:39:45Z
dc.date.issued2019-01-01
dc.identifierElectronic Journal of Qualitative Theory of Differential Equations, v. 2019.
dc.identifier1417-3875
dc.identifierhttp://hdl.handle.net/11449/187548
dc.identifier10.14232/ejqtde.2019.1.18
dc.identifier2-s2.0-85064197610
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5368586
dc.description.abstractWe consider a class of retarded functional differential equations with preas-signed moments of impulsive effect and we study the Lipschitz stability of solutions of these equations using the theory of generalized ordinary differential equations and Lyapunov functionals. We introduce the concept of variational Lipschitz stability and Lipschitz stability for generalized ordinary differential equations and we develop the theory in this direction by establishing conditions for the trivial solutions of generalized ordinary differential equations to be variationally Lipschitz stable. Thereby, we apply the results to get the corresponding ones for impulsive functional differential equations.
dc.languageeng
dc.relationElectronic Journal of Qualitative Theory of Differential Equations
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectGeneralized ODEs
dc.subjectImpulsive RFDEs
dc.subjectLipschitz stability
dc.subjectVariational lipschitz stability
dc.titleLipschitz stability of generalized ordinary differential equations and impulsive retarded differential equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución