dc.contributorUniversidade Federal de São Carlos (UFSCar)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-04T13:42:58Z
dc.date.accessioned2022-12-19T18:16:24Z
dc.date.available2019-10-04T13:42:58Z
dc.date.available2022-12-19T18:16:24Z
dc.date.created2019-10-04T13:42:58Z
dc.date.issued2018-01-01
dc.identifier2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 419-424, 2018.
dc.identifierhttp://hdl.handle.net/11449/186246
dc.identifierWOS:000448144200073
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5367294
dc.description.abstractThe Deep learning framework has been widely used in different applications from medicine to engineering. However, there is a lack of works that manage to deal with the issue of hyperparameter fine-tuning, since machine learning techniques often require a considerable human effort in this task. In this paper, we propose to fine-tune Deep Boltzmann Machines using meta-heuristic techniques, which do not require the computation of the gradient of the fitness function, that may be insurmountable in high-dimensional optimization spaces. We demonstrate the validity of the proposed approach against Deep Belief Networks concerning binary image reconstruction.
dc.languageeng
dc.publisherIeee
dc.relation2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci)
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectDeep Learning
dc.subjectDeep Boltzmann Machines
dc.subjectMeta-heuristic Optimization
dc.titleFine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución