dc.contributorUniversidade de São Paulo (USP)
dc.contributorBoston Univ
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-04T12:40:49Z
dc.date.accessioned2022-12-19T18:14:03Z
dc.date.available2019-10-04T12:40:49Z
dc.date.available2022-12-19T18:14:03Z
dc.date.created2019-10-04T12:40:49Z
dc.date.issued2019-08-19
dc.identifierScientific Reports. London: Nature Publishing Group, v. 9, 8 p., 2019.
dc.identifier2045-2322
dc.identifierhttp://hdl.handle.net/11449/186045
dc.identifier10.1038/s41598-019-48353-4
dc.identifierWOS:000481590200047
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5367097
dc.description.abstractWe use the recently-proposed compressible cell Ising-like model to estimate the ratio between thermal expansivity and specific heat (the Gruneisen parameter Gamma(s)) in supercooled water. Near the critical pressure and temperature, Gamma(s) becomes significantly sensitive to thermal fluctuations of the order-parameter, a characteristic behavior of pressure-induced critical points. Such enhancement of Gamma(s) indicates that two energy scales are governing the system, namely the coexistence of high- and low-density liquids, which become indistinguishable at the critical point in the supercooled phase. The temperature dependence of the compressibility, sound velocity and pseudo-Gruneisen parameter Gamma(w) are also reported. Our findings support the proposed liquid-liquid critical point in supercooled water in the No-Man's Land regime, and indicates possible applications of this model to other systems. In particular, an application of the model to the qualitative behavior of the Ising-like nematic phase in Fe-based superconductors is also presented.
dc.languageeng
dc.publisherNature Publishing Group
dc.relationScientific Reports
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.titleEnhanced Gruneisen Parameter in Supercooled Water
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución