dc.contributorUniversidade Federal de São Carlos (UFSCar)
dc.contributorUniv Western Sao Paulo
dc.contributorCatarinense Fed Inst
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-04T12:37:26Z
dc.date.accessioned2022-12-19T18:09:41Z
dc.date.available2019-10-04T12:37:26Z
dc.date.available2022-12-19T18:09:41Z
dc.date.created2019-10-04T12:37:26Z
dc.date.issued2019-05-01
dc.identifierIeee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 10, n. 3, p. 3226-3235, 2019.
dc.identifier1949-3053
dc.identifierhttp://hdl.handle.net/11449/185671
dc.identifier10.1109/TSG.2018.2821765
dc.identifierWOS:000466603800077
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5366723
dc.description.abstractProbabilistic-driven classification techniques extend the role of traditional approaches that output labels (usually integer numbers) only. Such techniques are more fruitful when dealing with problems where one is not interested in recognition/identification only, but also into monitoring the behavior of consumers and/ or machines, for instance. Therefore, by means of probability estimates, one can take decisions to work better in a number of scenarios. In this paper, we propose a probabilistic-based optimum-path forest (OPF) classifier to handle the problem of non-technical losses (NTL) detection in power distribution systems. The proposed approach is compared against naive OPF, probabilistic support vector machines, and logistic regression, showing promising results for both NTL identification and in the context of general-purpose applications.
dc.languageeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relationIeee Transactions On Smart Grid
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectOptimum-path forest
dc.subjectprobabilistic classification
dc.subjectnon-technical losses
dc.titleA Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución