dc.contributorUniversidade Federal do ABC (UFABC)
dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniv Munich
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-04T12:37:17Z
dc.date.accessioned2022-12-19T18:09:28Z
dc.date.available2019-10-04T12:37:17Z
dc.date.available2022-12-19T18:09:28Z
dc.date.created2019-10-04T12:37:17Z
dc.date.issued2019-01-01
dc.identifierInternational Journal Of Thermal Sciences. Issy-les-moulineaux: Elsevier France-editions Scientifiques Medicales Elsevier, v. 135, p. 533-545, 2019.
dc.identifier1290-0729
dc.identifierhttp://hdl.handle.net/11449/185653
dc.identifier10.1016/j.ijthermalsci.2018.09.039
dc.identifierWOS:000466262700043
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5366705
dc.description.abstractThe present work aims to perform a parametric study of heat transfer enhancement and the associated pressure loss applied to louvered fins with rectangular winglet vortex generators (RWL). The contributions of a set of design variables on heat transfer and pressure drop are evaluated for two geometry types, L1 and L2. The procedure to investigate the relative importance of the geometrical design variables on thermal-hydraulic performance is enabled by a Design of Simulations (DOS) method called Latin Hypercube Sampling (LHS) in association with a modern non-parametric statistical method (Smoothing Spline ANOVA method) and Computational Fluid Dynamics. Outcomes from the screening analyses turned out that the louver angle is the unique contributor to friction factor for both geometry types and this behaviour is independent of Reynolds number. With respect to heat transfer, the contributions of the input variables are different for both geometry types and Reynolds numbers. For Re-Dh = 120, no important two-factor interaction effects were observed for both L1 and L2, in the same way as occurred in terms of friction factor. Conversely, for Re-Dh = 240 one relevant interaction effect was observed.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationInternational Journal Of Thermal Sciences
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectLouvered fin
dc.subjectLongitudinal vortex generators
dc.subjectHeat transfer enhancement
dc.subjectScreening analysis
dc.subjectSmoothing spline ANOVA method
dc.subjectComputational fluid dynamics
dc.subjectThermal-hydraulic performance
dc.titleParametric investigation of heat transfer enhancement and pressure loss in louvered fins with longitudinal vortex generators
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución