dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal de Santa Catarina (UFSC)
dc.date.accessioned2019-10-04T12:36:48Z
dc.date.accessioned2022-12-19T18:08:44Z
dc.date.available2019-10-04T12:36:48Z
dc.date.available2022-12-19T18:08:44Z
dc.date.created2019-10-04T12:36:48Z
dc.date.issued2019-04-01
dc.identifierOsaka Journal Of Mathematics. Toyonaka: Osaka Journal Of Mathematics, v. 56, n. 2, p. 391-416, 2019.
dc.identifier0030-6126
dc.identifierhttp://hdl.handle.net/11449/185591
dc.identifierWOS:000463159600011
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5366643
dc.description.abstractWe establish invariants for the trace map associated to a family of 1D discrete Dirac operators with Sturmian potentials. Using these invariants we prove that the operators have purely singular continuous spectrum of zero Lebesgue measure, uniformly on the mass and parameters that define the potentials. For rotation numbers of bounded density we prove that these Dirac operators have purely alpha-continuous spectrum, as to the Schrodinger case, for some alpha is an element of (0, 1). To the Sturmian Schrodinger and Dirac models we establish a comparison between invariants of the trace maps, which allows to compare the numbers alpha's and lower bounds on transport exponents.
dc.languageeng
dc.publisherOsaka Journal Of Mathematics
dc.relationOsaka Journal Of Mathematics
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.titleINVARIANTS OF THE TRACE MAP AND UNIFORM SPECTRAL PROPERTIES FOR DISCRETE STURMIAN DIRAC OPERATORS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución