dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorENETcom
dc.contributorUniv Clermont Auvergne
dc.contributorDept Phys & Biophys
dc.contributorInst Pascal
dc.contributorMir Cl Lab
dc.contributorCHU
dc.date.accessioned2019-10-04T12:34:18Z
dc.date.accessioned2022-12-19T18:05:14Z
dc.date.available2019-10-04T12:34:18Z
dc.date.available2022-12-19T18:05:14Z
dc.date.created2019-10-04T12:34:18Z
dc.date.issued2018-01-01
dc.identifier33rd Annual Acm Symposium On Applied Computing. New York: Assoc Computing Machinery, p. 14-21, 2018.
dc.identifierhttp://hdl.handle.net/11449/185292
dc.identifier10.1145/3167132.3167167
dc.identifierWOS:000455180700003
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5366345
dc.description.abstractIn this article, we propose a complete framework devoted to detect liver HCC (Hepato-Cellular Carcinoma) tumors within DCE-MRI (Dynamic Contrast Enhanced-MRI) sequences. Our system employs different phases of these hepatic image sequences (depending on time after contrast agent injection) to describe local patches with wavelet-based descriptors. By using a SVM (Support Vector Machine)-based classification, we are able to distinguish healthy patches from pathological ones. Moreover, thanks to a parallel image processing strategy, we are able to reduce significantly the running time so that our system may be utilized as a computer aided diagnosis tool in the future. Our experiments show that our contribution is an accurate system for HCC detection, with a small cohort of patients, but representing a high volume of image data to be processed. This work encourages us to conduct deeper researches for detecting complex HCC cases for larger patients cohorts.
dc.languageeng
dc.publisherAssoc Computing Machinery
dc.relation33rd Annual Acm Symposium On Applied Computing
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectMedical image analysis
dc.subjectmachine learning
dc.subjectDCE-MRI
dc.subjectliver
dc.subjectHCC
dc.subjecttumor detection
dc.subjectparallelization
dc.subjectwavelet image description
dc.titleA Parallel Framework for HCC Detection in DCE-MRI Sequences with Wavelet-Based Description and SVM classification
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución