dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorTexas A&M Univ
dc.date.accessioned2019-10-04T12:32:43Z
dc.date.accessioned2022-12-19T18:03:09Z
dc.date.available2019-10-04T12:32:43Z
dc.date.available2022-12-19T18:03:09Z
dc.date.created2019-10-04T12:32:43Z
dc.date.issued2017-01-01
dc.identifier2017 Ieee Pes Innovative Smart Grid Technologies Conference - Latin America (isgt Latin America). New York: Ieee, 6 p., 2017.
dc.identifierhttp://hdl.handle.net/11449/185108
dc.identifierWOS:000451380200003
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5366161
dc.description.abstractThe risk assessment approach is useful for monitoring and supervisory control because it provides distribution operator with the capability to quantify the tradeoff between reliability and economic performance. The risk assessment determines the likelihood of something going wrong in a distribution network through the failure probability metric. To deal with the massive variety of information required in the calculation of failure probability we propose a data mining approach. The proposed approach incorporates weather, asset and outage information for characterizing the risk in a distribution network section via GIS platform.
dc.languageeng
dc.publisherIeee
dc.relation2017 Ieee Pes Innovative Smart Grid Technologies Conference - Latin America (isgt Latin America)
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectelectricity supply industry
dc.subjectfailure probability
dc.subjectgeographic information systems
dc.subjectpower distribution
dc.subjectrisk analysis
dc.titleFailure Probability Metric by Machine Learning for Online Risk Assessment in Distribution Networks
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución