dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorCorumba Concessoes SA
dc.date.accessioned2019-10-04T12:32:39Z
dc.date.accessioned2022-12-19T18:02:58Z
dc.date.available2019-10-04T12:32:39Z
dc.date.available2022-12-19T18:02:58Z
dc.date.created2019-10-04T12:32:39Z
dc.date.issued2018-01-01
dc.identifierIgarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium. New York: Ieee, p. 8941-8944, 2018.
dc.identifier2153-6996
dc.identifierhttp://hdl.handle.net/11449/185094
dc.identifierWOS:000451039808130
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5366147
dc.description.abstractRecently, drone images have been used in a number of applications, mainly for pollution control and surveillance purposes. In this paper, we introduce the well-known Convolutional Neural Networks in the context of environmental monitoring using drone images, and we show their robustness in real-world images obtained from uncontrolled scenarios. We consider a transfer learning-based approach and compare two neural models, i.e., VGG16 and VGG19, to distinguish four classes: water, deforesting area, forest, and buildings. The results are analyzed by experts in the field and considered pretty much reasonable.
dc.languageeng
dc.publisherIeee
dc.relationIgarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectLand-use classification
dc.subjectDrones
dc.subjectConvolutional Neural Networks
dc.titleENVIRONMENTAL MONITORING USING DRONE IMAGES AND CONVOLUTIONAL NEURAL NETWORKS
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución