dc.contributorUniv Tecnol Fed Parana
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade de São Paulo (USP)
dc.date.accessioned2019-10-04T12:13:38Z
dc.date.accessioned2022-12-19T17:54:58Z
dc.date.available2019-10-04T12:13:38Z
dc.date.available2022-12-19T17:54:58Z
dc.date.created2019-10-04T12:13:38Z
dc.date.issued2019-05-01
dc.identifierApplied Intelligence. Dordrecht: Springer, v. 49, n. 5, p. 1771-1784, 2019.
dc.identifier0924-669X
dc.identifierhttp://hdl.handle.net/11449/184438
dc.identifier10.1007/s10489-018-1346-4
dc.identifierWOS:000463843400009
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5365492
dc.description.abstractBackground subtraction is the prerequisite for a wide range of applications including video surveillance, smart environments and content retrieval. Real environments present some challenging situations even for the most recent algorithms, such as shadows, illumination changes, dynamic background, among others. If a real environment is previously known and the challenging situations of this environment can be predicted, the choice of an appropriate algorithm to deal with such situations may be essential for obtaining better segmentation results. In our work, we identify the main situations that affect the performance of background subtraction algorithms and present a classification of these challenging situations. In addition, we present a solution that uses videos and ground-truths from existing datasets to evaluate the performance of segmentation algorithms when they need to deal with a specific challenging situation.
dc.languageeng
dc.publisherSpringer
dc.relationApplied Intelligence
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectBackground subtraction
dc.subjectForeground extraction
dc.subjectAlgorithm evaluation
dc.subjectChallenging situation
dc.titleChallenging situations for background subtraction algorithms
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución