dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniv Fed Paraiba
dc.date.accessioned2019-10-03T18:18:27Z
dc.date.accessioned2022-12-19T17:49:03Z
dc.date.available2019-10-03T18:18:27Z
dc.date.available2022-12-19T17:49:03Z
dc.date.created2019-10-03T18:18:27Z
dc.date.issued2014-01-01
dc.identifierVi Latin American Congress On Biomedical Engineering (claib 2014). Cham: Springer Int Publishing Ag, v. 49, p. 226-229, 2014.
dc.identifier1680-0737
dc.identifierhttp://hdl.handle.net/11449/183943
dc.identifier10.1007/978-3-319-13117-7_59
dc.identifierWOS:000363767200058
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5364999
dc.description.abstractThe mechanical competence parameter (MCP) has been defined to grade the trabecular bone fragility based on the principal component analysis (PCA) evaluated in terms of volume fraction, connectivity, tortuosity and Young modulus of elasticity. Using a set of 83 in vivo distal radius magnetic resonance image samples, an artificial neural network (ANN) has been trained to predict the MCP. After the learning phase, the ANN was able to predict the MCP for 20 new samples with very high accuracy. It is shown that there is a strong correlation (r = 0.99) between the MCP estimated by PCA and ANN techniques. In addition, the Bland-Altman plot provides evidence that the PCA and ANN are reasonably comparable techniques to estimate the MCP.
dc.languageeng
dc.publisherSpringer
dc.relationVi Latin American Congress On Biomedical Engineering (claib 2014)
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectTrabecular bone
dc.subjectmechanical competence
dc.subjectartificial neural network
dc.subjectlearning
dc.subjectosteoporosis
dc.titleNeural Network Prediction of the Trabecular Bone Mechanical Competence Parameter
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución