dc.contributorCoelho, Guilherme Palermo
dc.creatorCarosia, Arthur Emanuel de Oliveira
dc.creatorSilva, Ana Estela Antunes da
dc.creatorCoelho, Guilherme Palermo
dc.date.accessioned2022-12-16T13:22:03Z
dc.date.available2022-12-16T13:22:03Z
dc.identifierhttps://doi.org/10.25824/redu/GFJHFK
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5363096
dc.descriptionThis package contains the datasets and source codes used in the PhD thesis entitled <a href="https://hdl.handle.net/20.500.12733/5361" target="_blank">Predicting the Brazilian stock market using sentiment analysis, technical indicators and stock prices</a>. <br> The following files are included: <ul> <li>File <em>Labeled.zip</em> - financial news labeled in two classes (<em>Positive</em> and <em>Negative</em>), organized to train Sentiment Analysis models. Part of these news were initially presented in [1]. Besides the news in this file, in the related PhD thesis the training dataset was complemented with the labeled news presented in [2]. </li> <li>File <em>Unlabeled.zip</em> - general unlabeled financial news collected during the period 2010-2020 from the following online sources: G1, Folha de São Paulo and Estadão. This file contains news from the Bovespa index and from the following companies: Banco do Brasil, Itau, Gerdau and Ambev. </li> <li>File <em>Stocks.zip</em> - stock prices from the companies Banco do Brasil, Itau, Gerdau, Ambev, and the Bovespa index. The considered period ranges from 2010 to 2020. </li> <li> File <em>Models.zip </em> - contains the source codes of the models used in the PhD thesis (i.e., Multilayer Perceptron, Long Short-Term Memory, Bidirectional Long Short-Term Memory, Convolutional Neural Network, and Support Vector Machines). </li> <li> File <em>Utils.zip</em> - contains the source codes of the preprocessing step designed for the methodology of this work (i.e., load data and generate the word embeddings), alongside with stocks manipulation, and investment evaluation. </li> </ul> [1] Carosia, A. E. D. O., Januário, B. A., da Silva, A. E. A., & Coelho, G. P. (2021). <strong>Sentiment Analysis Applied to News from the Brazilian Stock Market</strong>. IEEE Latin America Transactions, 100. DOI: <a href="https://doi.org/10.1109/TLA.2022.9667151" target="_blank">10.1109/TLA.2022.9667151</a> <br> [2] MARTINS, R. F.; PEREIRA, A.; BENEVENUTO, F. <strong>An approach to sentiment analysis of web applications in portuguese</strong>. Proceedings of the 21st Brazilian Symposium on Multimedia and the Web, ACM, p. 105–112, 2015. DOI: <a href="https://doi.org/10.1145/2820426.2820446" target="_blank">10.1145/2820426.2820446</a>
dc.publisherRepositório de Dados de Pesquisa da Unicamp
dc.subjectComputer and Information Science
dc.subjectSentiment analysis
dc.subjectArtificial neural networks
dc.subjectDeep learning
dc.subjectStock market
dc.titleReplication data for: predicting the brazilian stock market using sentiment analysis, technical indicators, and stock prices


Este ítem pertenece a la siguiente institución