The Great Role of Klotho
El gran papel de Klotho;
O grande papel de Klotho
dc.creator | Delgado Troche, Fabiana Verónica | |
dc.date | 2021-12-31 | |
dc.date.accessioned | 2022-12-15T18:29:14Z | |
dc.date.available | 2022-12-15T18:29:14Z | |
dc.identifier | https://revistas.unimilitar.edu.co/index.php/rmed/article/view/5021 | |
dc.identifier | 10.18359/rmed.5021 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5357502 | |
dc.description | Klotho is a single-pass transmembrane protein consisting of 1012 amino acids and expressed strongly and weakly in proximal and distal tubular renal epithelial cells, respectively. There are four groups of Klotho proteins. The α Klotho gene is abundantly expressed in the kidneys, parathyroid glands, choroid plexus, and also in the cerebral cortex, spinal cord, cerebellum, hypothalamus, pituitary, parathyroid glands, ovary, testes, epithelial cells of the sinus, placenta, pancreas, inner ear, vascular smooth muscle cells or intestine. KLOTHO exhibits multiple functions, in addition to phosphate excretion, including enhancing oxidative stress and inhibiting signaling pathways for insulin growth factor, Wnt / β-catenin, transformation of growth factor -β1, and mechanistic targeting of rapamycin signaling, obtaining an important role in a number of pathological events such as the one generated by the recent pandemic. Both new and previous work in humans and mice provide a strong rationale for further examining the role of klotho in health and aging. KEY WORDS: Proteins, Aging, Inflammation, Reactive Oxygen Species, Disease | en-US |
dc.description | Klotho es una proteína transmembrana de un solo paso que consta de 1012 aminoácidos y se expresa fuerte y débilmente en células epiteliales renales tubulares distales y proximales, respectivamente. Hay cuatro grupos de proteínas Klotho. El gen α Klotho se expresa abundantemente en riñones, glándulas paratiroides, plexo coroideo, y también en la corteza cerebral, la médula espinal, cerebelo, hipotálamo, hipófisis, glándulas paratiroides, ovario, testículos, células epiteliales del seno, placenta, páncreas, oído interno, vascular células del músculo liso o intestino. KLOTHO exhibe múltiples funciones, además de la excreción de fosfato, incluida la mejora del estrés oxidativo y la inhibición de vías de señalización del factor de crecimiento de insulina, Wnt / β-catenina, transformación del factor de crecimiento -β1, y el objetivo mecanicista de la señalización de rapamicina, obteniendo un importante papel dentro de un sin número de eventos patológicos como el que generó la reciente pandemia. Tanto nuevos trabajos como anteriores en humanos y los ratones proporcionan una fuerte justificación para examinar más a fondo el papel del klotho en la salud y el envejecimiento. | es-ES |
dc.description | Klotho é uma proteína transmembrana de uma etapa que consiste em 1012 aminoácidos e é forte e fracamente expressa em células epiteliais renais tubulares distais e proximais, respectivamente. Existem quatro grupos de proteínas Klotho. O gene α Klotho é abundantemente expresso em rins, glândulas paratireóides, plexo coróide, bem como no córtex cerebral, medula espinhal, cerebelo, hipotálamo, glândulas pituitárias, ovário, testículos, células epiteliais do seio, placenta, pâncreas, ouvido interno, endotélio vascular do músculo liso e intestinal. Klotho apresenta múltiplas funções, além da excreção de fosfato, incluindo a melhora do estresse oxidativo e inibição das vias de sinalização do fator de crescimento insulínico, WNT/β-catenina, transformação do fator de crescimento-β1 e o objetivo mecanicista da sinalização da rapamicina, de modo que um papel importante dentro de inúmeros eventos patológicos, como o que causou a recente pandemia gerada pela covid-19. Estudos novos e anteriores em humanos e camundongos (por exemplo, o impacto do Klotho na lesão pulmonar aguda) fornecem uma forte justificativa para examinar melhor o papel do Klotho na saúde e no envelhecimento. | pt-BR |
dc.format | application/pdf | |
dc.format | text/xml | |
dc.language | spa | |
dc.publisher | Universidad Militar Nueva Granada | es-ES |
dc.relation | https://revistas.unimilitar.edu.co/index.php/rmed/article/view/5021/5013 | |
dc.relation | https://revistas.unimilitar.edu.co/index.php/rmed/article/view/5021/5071 | |
dc.relation | /*ref*/Xiao Z, King G, Mancarella S, Munkhsaikhan U, Cao L, Cai C, et al. FGF23 expression is stimulated in transgenic α-Klotho longevity mouse model. JCI Insight. 2019;4(23). 2. Martín-González C, González-Reimers E, Quintero-Platt G, Martínez-Riera A, Santolaria-Fernández F. Soluble α-Klotho in Liver Cirrhosis and Alcoholism. Alc. 2019;54(3):204-8. 3. Hu, M. C., Kuro-o, M., and Moe, O. W. Renal and Extrarenal Actions of Klotho. Sem Neph. 2013;33(2):118-129. DOI: https://doi.org/10.1016/j.semnephrol.2012.12.013 4. Shi, Y., K. J. Davis, F. Zhang and C. J. Duffy, and X. Yu: Parameter estimation of a physically-based land surface hydrologic model using an ensemble Kalman filter: A multivariate real-data experiment. Ad Wa Res. 2015;83:421-427. DOI: https://doi.org/10.1016/j.advwatres.2015.06.009 5. Cararo-Lopes, M. M., Mazucanti, C. H. Y., Scavone, C., Kawamoto, E. M., & Berwick, D. C. The relevance of α-KLOTHO to the central nervous system: Some key questions. Ag Res Rev. 2017;36. 6. Kuzina ES, Ung PMU, Mohanty J, Tome F, Choi J, Pardon E, et al. Structures of ligand-occupied β-Klotho complexes reveal a molecular mechanism underlying endocrine FGF specificity and activity. Proc Natl Acad Sci; 2019; 116(16):7819-24. 7. Sen JM. Phenotypes of Klotho. Aging (Albany, NY); 201911(14):4777-8. 8. Socha-Banasiak A, Michalak A, Pacześ K, Gaj Z, Fendler W, Socha A, et al. Klotho and fibroblast growth factors 19 and 21 serum concentrations in children and adolescents with normal body weight and obesity and their associations with metabolic parameters. BMC Pediatr; 2020;20(1):294. 9. Kohara, Masuda T, Shiizaki K, Akimoto T, Watannabe Y, Honma S., et al. Association between circulating fibroblast growth factor 21 and mortality in endstage renal disease. PLoS One. 2017;12:e0178971. 10. McClung, C. A. How might circadian rhythms control mood? Let me count the ways. Biol. Psy. 2013;74, 242-249. 11. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, et al. Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem. 2006;281(10):6120-3. 12. Farrokhi, F., Abedi, N., Beyene, J., Kurdyak, P. y Jassal, S. V. Association between depression and mortality in patients receiving long- term dialysis: a systematic review and meta- analysis. Am. J. Kidney Dis. 2014;63:623-635. 13. Cao K, Zhang J, Johanne P, Moe O, Hsia CC. In Search of Alpha-Klotho Protein Expression in the Lung; 2019; A3843-A3843. 14. Kuro-o M. The Klotho proteins in health and disease. Nat Rev Nephrol; 2019;15(1):27-44. DOI: https://doi.org/10.1038/s41581-018-0078-3 15. De Oca AM, Guerrero F, Martinez-Moreno JM, et al. Magnesium inhibits wnt/b catenin activity and reverses the osteogenic transformation of vascular smooth muscle cells. PLoS One. 2014;9(2):1-10 (2014). DOI: https://doi.org/10.1371/journal.pone.0089525 16. Louvet L, Metzinger L, Büchel J, Steppan S, Massy ZA. Magnesium AttenuatesPhosphate-Induced Deregulation of a MicroRNA Signature and Prevents 1 Modulation of Smad1 and Osterix during the Course of Vascular Calcification. Biomed Res Int. 2016;1-11. DOI: https://doi.org/10.1155/2016/7419524 17. Louvet L, Büchel J, Steppan S, Passlick-Deetjen J y Massy ZA. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells. Nephrol Dial Transplant. 2013; 28(4):869-878. DOI: https://doi.org/10.1093/ndt/gfs520 18. Arbel Rubinstein T, Shahmoon S, Zigmond E, Etan T, Merenbakh-Lamin K y Pasmanik-Chor M, et al. Klotho suppresses colorectal cancer through modulation of the unfolded protein response. Oncogene 2019;38(6):794-807. DOI: https://doi.org/10.1038/s41388-018-0489-4 19. Yokoyama S, Oguro R, Yamamoto K, Akasaka H, Ito N, Kawai T, et al. A Klotho gene single nucleotide polymorphism is associated with the onset of stroke and plasma Klotho concentration. Aging (Albany NY). 2019;11(1):104-14. 20. Braake AD, Smit AE, Bos C, van Herwaarden AE, Alkema W, van Essen HW, et al. Magnesium prevents vascular calcification in Klotho deficiency. Kidney Int [Internet]. 97(3):487-501. DOI: https://doi.org/10.1016/j.kint.2019.09.034 21. Shardell M, Semba RD, Kalyani RR, Bandinelli S, Prather AA, Chia CW, et al. Plasma Klotho and Frailty in Older Adults: Findings from the InCHIANTI Study. J Ger Ser A Biol Sci Med Sci; 2019;74(7):10528. 22. Jorge LB, Coelho FO, Sanches TR, Malheiros DMAC, De Souza LE, Dos Santos F, et al. Klotho deficiency aggravates sepsis-related multiple organ dysfunction. Am J Physiol-Ren Physiol. 2019;316(3):F438-48. 23. Neyra JA, Moe OW, Pastor J, Gianella F, Sidhu SS, Sarnak MJ, et al. Performance of soluble Klotho assays in clinical samples of kidney disease. Clin Kidney J. 2019;13(2):235-44. 24. Hu, M. C. et al. Klotho deficiency is an early biomarker of renal ischemia- reperfusion injury and its replacement is protective. Kidney Int. 2010;78: 1240-1251. 25. Owen, B. M., Mangelsdorf, D. J. & Kliewer, S. A. Tissue- specific actions of the metabolic hormones FGF15/19 and FGF21. Tr End Met. 2015;26:22-29. 26. Kenyon, C. J. The genetics of ageing. Nature. 2010;464:504-512 (2010).132. 27. Doi S, Zou, Y, Togao, O, Pastor J, John, G, Wang L. Klotho inhibits transforming growth factor- β1 (TGF- β1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem; 2011;286: 8655-8665. 28. Adams AC, Yang C, Coskun T, Cheng CC, Gimeno RE, Luo Y, Kharitonenkov A. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab. 2012 ag;28;2(1):31-7. DOI: https://doi.org/10.1016/j.molmet.2012.08.007 29. Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS, Kharitonenkov A, Spiegelman BM, Maratos-Flier. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocr. 2011;152:2996-3004. 30. Hu, M. C., Shi, M., Gillings, N., Flores, B., Takahashi, M., Kuro-O, M. y Moe, O. W. Recombinant α- Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kid Int. 2017;91:110-1114. 31. Nabeshima Y, Washida M, Tamura M, Maeno A, Ohnishi M, Shiroishi T, Imura A, Razzaque MS, Nabeshima Y. Calpain 1 inhibitor BDA-410 ameliorates α-Klotho-deficiency phenotypes resembling human aging-related syndromes. Sci Rep. 2014 ag; 1(4):5847. DOI: https://doi.org/10.1038/srep05847 32. Leibrock CB, Alesutan I, Voelkl J, Pakladok T, Michael D, Schleicher E, Kamyabi-Moghaddam Z, Quintanilla-Martinez L, Kuro-o M, Lang F. NH4Cl Treatment Prevents Tissue Calcification in Klotho Deficiency. J Am Soc Nephrol. 2011 oct;26(10):2423-33. DOI: https://doi.org/10.1681/ASN.2014030230 33. Beck Gooz M, Maldonado EN, Dang Y, et al. ADAM17 promotes proliferation of collecting duct kidney epithelial cells through ERK activation and increased glycolysis in polycystic kidney disease. Am J Physiol Renal Physiol. 2014;307:F551-F559. 34. Hum JM, O'Bryan LM, Tatiparthi AK, Cass TA, Clinkenbeard EL, Cramer MS, Bhaskaran M et al. Chronic hyperphosphatemia and vascular calcification are reduced by stable delivery of soluble Klotho. J Am Soc Nephrol. 2017 abr;28(4):1162-1174. DOI: https://doi.org/10.1681/ASN.2015111266 35. Wirrig, E E, Gomez, MV, Hinton, RB y Yutzey, KE. COX2 inhibition reduces aortic valve calcification in vivo. Arterioscler Thromb Vasc Biol. 2105;35:938-947. 36. Grange C, Papadimitriou E, Dimuccio V, Pastorino C, Molina J, O’Kelly R, et al. Urinary extracellular vesicles carrying Klotho improve the recovery of renal function in an acute tubular injury model. Mol Ther. 2020;28(2):490-502. DOI: https://doi.org/10.1016/j.ymthe.2019.11.013 37. Kuro-O M. Klotho and endocrine fibroblast growth factors: markers of chronic kidney disease progression and cardiovascular complications? Nephrol Dial Transplant. 2019;34(1):15-21. 38. Trave´ s PG, de Atauri P, Marı´n S, et al. Relevance of the MEK/ERK signaling pathway in the metabolism of activated macrophages: a metabolomic approach. J Immunol. 2012;188:1402-1410. 39. Li X, Jiang Y, Meisenhelder J, Yang W, Hawke D, Zheng Y, et al. Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol Cell. 2016;61:705-719. 40. Kachel P, Trojanowicz B, Sekulla C, Prenzel H, Dralle H y Hoang-Vu C. Phosphorylation of pyruvate kinase M2 and lactate dehydrogenase A by fibroblast growth factor receptor 1 in benign and malignant thyroid tissue. BMC Cancer. 2015;15:140. 41. Van Harten AC. Comment: Longevity gene Klotho may play a role in Alzheimer disease. Neur. 2019;92(16):751. 42. Lim K, Halim A, Lu TS, Ashworth A, Chong I. Klotho: A major shareholder in vascular aging enterprises. Int J Mol Sci. 2019;20(18). 43. Welc SS, Wehling-Henricks M, Kuro-o M, Thomas KA, Tidball JG. Modulation of Klotho expression in injured muscle perturbs Wnt signalling and influences the rate of muscle growth. Exp Physiol. 2020;105(1):132-47. 44. Miura Y, Iwazu Y, Shiizaki K, Akimoto T, Kotani K, Kurabayashi M, Kurosu H, Kuro-O M. Identification and quantification of plasma calciprotein particles with distinct physical properties in patients with chronic kidney disease. Sci Rep. 2018 en;19;8(1):1256. DOI: https://doi.org/10.1038/s41598-018-19677-4. 45. Becke A, Maass A, Kreutz MR, Duezel E. Serum α-Klotho levels correlate with episodic memory changes related to cardiovascular exercise in older adults 2020. DOI: https://doi.org/10.1101/2020.01.16.908913 46. Mazucanti CH, Kawamoto EM, Mattson MP, Scavone C, Camandola S. Activity-dependent neuronal Klotho enhances astrocytic aerobic glycolysis. J Cereb Blood Flow Metab; 39(8):1544–56 (2019). 47. Vo HT, Phillips ML, Herskowitz JH, King GD. Klotho deficiency affects the spine morphology and network synchronization of neurons. Mol Cell Neurosci. 2019 nov;98(61):1-11. 48. Toth AB, Terauchi A, Zhang LY, Johnson-Venkatesh E, Larsen D, Sutton M y Umemori H. Synapse maturation by activity-dependent ectodomain shedding of SIRPa. Nat Neurosci. 2013;16:1417-1425. 49. Kim J, Lilliehook C, Dudak A, Dudak A, Prox J, Saftig P, Federoff H y Lim S. Activity-dependent alpha-cleavage of nectin-1 is mediated by a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem. 2010;285:22919-22926. 50. Iwakura Y, Wang R, Inamura N, Araki K, Higashiyama S, Takei N y Nawa H. Glutamatedependent ectodomain shedding of neuregulin-1 type II precursors in rat forebrain neurons. PLoS One. 2017;12:e0174780. 51. Prud’homme GJ, Glinka Y, Kurt M, Liu W, Wang Q. Systemic Klotho therapy protects against insulitis and enhances beta-cell mass in NOD mice. Biochem Biophys Res Commun. 2020;525(3):693-8. 52. Kuro-o M. Klotho and aging. Biochim Biophys Acta-Gen Subj 2009;1790(10):1049-58. DOI: https://doi.org/10.1016/j.bbagen.2009.02.005 53. Kurosu H, Yamamoto M, Clark JD, Pastor J V., Nandi A, Gurnani P, et al. Physiology: suppression of aging in mice by the hormone Klotho. Sc. 2005;309(5742):1829-33. 54. Kadoya H, Satoh M, Nishi Y, Kondo M, Wada Y, Sogawa Y, et al. Klotho is a novel therapeutic target in peritoneal fibrosis via Wnt signaling inhibition. Nephrol Dial Transplant. 2020;35(5):773-81. 55. Fan J, Hitosugi T, Chung T, Xie J, Ge Q y Gu T. Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(þ) redox homeostasis in cancer cells. Mol Cell Biol. 2011;31:4938-4950. 56. Li L, Huang Q, Wang DC, Ingbar DH, Wang X. Acute lung injury in patients with Covid-19 infection. Clin Transl Med. 2020;10(1):20-7. 57. Zhang Z, Nian Q, Chen G, Cui S, Han Y y Zhang J. Klotho alleviates lung injury caused by paraquat via suppressing ROS/P38 MAPK-Regulated Inflammatory Responses and Apoptosis. Oxid Med Cell Longev. 2020. 58. Romani L, Tomino C, Puccetti P, Garaci E. Off-label therapy targeting pathogenic inflammation in Covid-19. Cell Death Discov. 2020;6(1):4-6. DOI: https://doi.org/10.1038/s41420-020-0283-2 59. Merad M, Martin JC. Pathological inflammation in patients with Covid-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355-62. DOI: https://doi.org/10.1038/s41577-020-0331-4 | |
dc.rights | Derechos de autor 2021 Revista Med | es-ES |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0 | es-ES |
dc.source | Revista Med; Vol. 29 No. 1 (2021): january - june; 25-35 | en-US |
dc.source | Revista Med; Vol. 29 Núm. 1 (2021): enero - junio; 25-35 | es-ES |
dc.source | 1909-7700 | |
dc.source | 0121-5256 | |
dc.title | The Great Role of Klotho | en-US |
dc.title | El gran papel de Klotho | es-ES |
dc.title | O grande papel de Klotho | pt-BR |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion |