dc.relation | /*ref*/Zajac F, Neptune R, Kautz S. Biomechanics and muscle coordinationof human walking Part II: Lessons from dynamical simulationsand clinical implications. Gait Posture. 2003;17:1–17. 2. Fregly BJ. Design of Optimal Treatments for NeuromusculoskeletalDisorders using Patient-SpecificMultibody Dynamic Models.Int J Comput Vision and Biomech. 2008;r:1–31. 3. Baker R. Gait Analysis Methods in Rehabilitation. J NeuroengRehabil.2006;3:4–14. 4. Bermudez AP, Dolhagaray P, Duque V. Material de Apoyo a laAsignatura Kinesiterapia (I) – Capítulo11: Marcha; 2006. p. 179. 5. Polanco A, Rogriguez C. Modelos Dinámicos de Movimientos Humanos.In: 8vo congreso Iberoamericanode Ing. Mecánica; 2007. 6. Martínez F, Gómez F, Romero E. Análisis de Video para Estimacióndel Movimiento Humano: Una revisión. Revista Med.2009;17:95-106. 7. Martínez F, Gómez F, Romero E. Desarrollo de un laboratoriode marcha con integración sincrónicamediante una arquitecturaen módulos. Acta Biológica Colombiana. 2010;15. 8. Reinbolt J, Haftka R, Chmielewski T, Fregly B. A ComputationalFramework to Predict Post Treatment Outcome for Gait-relatedDisorders. Med Eng& Physics. 2008;30:434-43. 9. Ren L, Howard D, Kenney L. Computational Models to SynthesizeHuman Walking. J Bionic Eng. 2006;3:127-38. 10. Komura T, Nagano A, Kudoh S, Shinagawa Y. SimulatingPathological Gait using the Enhanced InvertedPendulum Model.J Biomech Eng. 2004;52(9):1-18. 11. Sanz C M. Marcha Patológica. Revista del pie y tobillo.2003;17:1-7. 12. Goñi J, García J M. Dinámica de los Sistemas Biológicos ModelandoComplejidad. Inicialización a la Investigación. RevistaElectrónica. 2006;1:1-9. 13. Zajac F, Neptune R, Kautz S. Biomechanics and Muscle Coordinationof Human Walking Part I: Introduction to Concepts,Power Transfer, Dynamics and Simulations. Gait Posture.2002;16:215-32. 14. Ackermann M. Dynamics and Energetics of Walking with Prostheses.University of Stuttgart; 2007. 15. Pandy M. Computer Modeling and Simulation of Human Movement.Ann Rev Biomed Eng. 2001;3:245-73. 16. Saunders M, Inman V T, Eberhart H D. The Major Determinantsin Normal and Pathological Gait. J Boneand Surgery.1953;35:543-58. 17. Standford University. Laboratorio Stanford; 2010. Availablefrom: http://nmbl.stanford.edu. 18. Horsman M, Koopman H, Van der Helm F, Poliacu L, Veeger H.Morphological Muscle and Joint Parameters for MusculoskeletalModelling of the Lower Extremity. Clin Biomech. 2007;22:239-47. 19. Inman V, Ralston H, Todd F. Human Walking 2nd Edition.Wilkins BW, editor. Rose J, Gamble JG editors; 1994 20. Ivanenko Y, Poppele R, Lacquaniti F. Five Basic Muscle ActivationPatterns Account for Muscle Activity during HumanLocomotion. J Physiol. 2004;556:267-82. 21. Minettif A, Alexander R. A Theory of Metabolic Costs for BipedalGaits. J Theor Biol. 1997;186:467-76.22. Lara M, Angulo M, Llanos L. Actividad Electromiográfica Normalen la Marcha Humana. Biomecanica.1996;7:110-6. 23. Gard S, Childress D. The Effect of Pelvic List on the VerticalDisplacement of the Trunk during Normal Walking. Gait Posture.1997;5:233-41. 24. Pandy M, Berme N. Quantitative Assessment of Gait Determinantsduring Single Stance Via a Three Dimensional Model/Part1. Normal Gait. J Biomech Eng. 1989;22:717-41. 25. García M, Ruina A, Coleman M, Chatterjee A. Passive DynamicModels of Human Gait; 1998. Departmentof Theoretical andApplied Mechanics. 26. McGeer T. Passive Dynamic Walking. J Biomech Eng.1998;123:264-9. 27. Kajita S, Yamaura T, Kobayashi A. Dynamic Walking Controlof a Biped Robot Along a Potential Energy Conserving Orbit.IEEE Trans Rob Autom. 1992;8:4-8. 28. Kuo A. A Simple Model of Bipedal Walking Predicts thePreferred Speed Step Length Relationship. J Biomech Eng.2001;123:264-9. 29. García M, Chatterjee A, Ruina A, Coleman M. The SimplestWalking Model: Stability, Complexity, and Scaling. J BiomechEng. 1998;120(2):281-8. 30. Collins S, Wisse M, Ruina A. A Three Dimensional Passive-Dynamic Walking Robot with Two Legsand Knees.Int J RobRes. 2001;17:607–615. 31. Frank B, Kevin C, Walker M, Rainbow M. Performance of aninverted pendulum model directly appliedto normal humangait. ClinBiomech. 2006;21:288 – 296. 32. Goswami A, Espiaun B, Keramane A. Limit Cycles and theirStability in a Passive Bipedal Gait. IEEE Magazine. 1998;1:246-51. 33. Martinez F, Gomez F, Romero E. A Kinematic Method forComputing the Motion of the Bodycentre-of-mass (CoM) duringWalking: A Bayesian Approach. Comp Meth Biomech BiomedEng. 2010;doi:10.1080/10255842.2010.486761. 34. Collins S, Ruina A. A Bipedal Walking Robot with Efficient andHuman-Like Gait; 2006.University of Michigan. 35. Thalmann D, Boulic R, Mas R. A Robust Approach for theControl of the Center of Mass with Inverse Kinetics. Computers& Graphics. 1996;20:5. 36. Kuo A D. Energetics of Actively Powered Locomotion Using theSimplest Walking Model. J Biomech Eng. 2002;124:113-20. 37. Kuo A D. The Six Determinants of Gait and the InvertedPendulum Analogy. A Dynamic Walking Perpective. HumanMovement Science. 2007;26:617-56. 38. Mochon S, MacMahon T. Ballistic Walking. J Biomech.1980;13:49-57. 39. Whittlesey S, Van Emmerik R, Hamill J. The Swing Phase ofHuman Walking Not a Passive Movement. Motor Control.2000;4:273-92. 40. Hurmuzlu Y. Dynamics of Bipedal Gait PartI: ObjectiveFunctions and the Contact Event of a PlanarFive-Link Biped.IEEE Magazine. 1998;24:1-18. 41. Sujatha M, Srinivasan, Tech B. Low-dimensional Modelingand Analysis of Human Gait with Application to the Gait ofTranstibial Prosthesis Users. The Ohio State University; 2007. 42. Perry M, Ayyappa E, Shan S, Torburn L. Below Knee AmputeeGait with Dynamic Elastic Response Prosthetic Feet. A PilotStudy. J Rehabil Res Dev. 1990;27:369-84. 43. Fonseca S, Hold K, Saltzman E. A Dynamical Model of Locomotionin Spastic Hemiplegic Cerebral Palsy Influence of WalkingSpeed. Clin Biomech. 2001;16:793-805. 44. Riley P, Kerrigan D C. Kinetics of Stiff-Legged Gait: InducedAcceleration Analysis. IEEE Transactionof Rehabilitation Engineering.1999;7:420. 45. Delp S, Loan J. A Graphics Based Software System to Developand Analyze Models of Musculoskeletal Structure. Comput BiolMedical. 1995;25:22–34. 46. Winby C, Lloyd D, Besier T, Kirk T. Muscle and External LoadContribution to Knee Joint Contact Loads during Normal Gait.J Biomech. 2009;42:2294-2300. 47. Inaba H, Miyazaki S, Hasegawa J. Muscle Driven Motion Simulationbased on Deformable Human Model Constructed fromReal Anatomical Slice Data. Lecture Notes in Comp Science.2002;2492:32-42. 48. Barrett R, Besier T, Lloyd D. Individual Muscle Contributionsto the Swing Phase of Gait: An EMG-basedforward DynamicsModelling Approach. Sim Modelling Practice and Theory.2007;15:1146-55. 49. Naruse K. Biped Walking Pattern by Virtual Muscle Oscillationin Growing Physical Parameter of RobotModel. ICROS SICEinternational Joint Conference 2009. 2009;r:2696 – 2699. 50. Ghafari A S, Meghdari A, Vossughi G. Estimation of HumanLower Extremity Musculoskeletal ConditionsDuring BackpackLoad Carrying. Trans Biomech Eng. 2009;16:451-62. 51. Komura T, Nagano A. Evaluation of the Influence of MuscleDeactivation on other Muscles and Joints during Gait Motion.J Biomech. 2004;37:425-36. 52. Scheys L, Jonkers I, Schutyser F, Pans S, Spaepen A, SuetensP. Image based Methods to Generate Subject-specific MusculoskeletalModels for Gait Analysis. Int Congress Series.2005;1281:62-7. 53. Lloyd D, Besier T. An EMG-driven musculoskeletal model toEstimate Muscle Forces and Knee Joint Moments in Vivo. JBiomech. 2003;36:765-76. 54. Hill AV. The Heat of Shortening and the Dynamic Constantsof Muscle. Proceedings of The RoyalSociety Biological Science.1938;136:136-95. 55. Lee L F, Krovi V N. Musculoskeletal Simulation-based ParametricStudy of Optimal Gait Frequency in Biped Locomotion. IEEEExplore. 2008. 56. Hoy M, Zajac F, Gordon M. A Muskuloskeletal Model of theHuman Lower Extremity: The Effect of Muscle, Tendon, andMoment Arm on the Moment-angle Relationship of MusculotendonActuators at the Hip, Knee, and Ankle. J Biomech.1990;23:157-69. 57. Shin D, Kim J, Koike Y. A Myokinetic Arm Model for EstimatingJoint Torque and Stiffness From EMGSignals During MaintainedPosture. J Neurophysiol. 2009;101:387-401. 58. Anderson G, Liu L, Wright A. Trajectory Planning and Controlfor a Human-like Robot Leg with Coupledneural-oscillators. In:In Proceedings of the 7th Mechatronics Forum: InternationalConference andMechatronics Educaiton Workshop; 2000. 59. Endo K, Herr H. A model of Muscle Tendon Function in HumanWalking. In: 2009 IEEE Int Conf on Robotics and Automation;2009. 60. Endo K, Herr H. Human Walking Model Predicts Joints Mechanics,Electromyografy and MechanicalEconomy. In: The 2009IEEE/RSJ Inter Conference on Intelligent Robots and Systems;2009 61. Delp S L, Anderson F C, Arnold A S, Loan P, Habib A, JohnC T, et al. Open Source Software to Create and Analyze DynamicSimulations of Movement. IEEE Trans Biomed Eng.2007;54:1940-51. 62. Delp S. An Interactive Graphics Based Model of the LowerExtremity to Study Orthopaedic SurgicalProcedures. IEEE TransBiomed Eng. 1990;37:757 63. Baldassarri S, Arbeloa S. Sistema MOBiL: DeformacionesMusculares Durante la Locomoción. Actas del XV CongresoEspañol de Informática Gráfica CEIG 2005. 2005;15:159-68. 64. Yamaguchi Y, Shimizu H, Taga G, Miyake Y. Generation and Coordinationof Bipedal Locomotion Through Global Entrainment.In: Proceedings of International Symposium on AutonomousDecentralizedSystems; 1993. 65. Arnold E, Ward S, Lieber R, Delp S. A Model of the LowerLimb for Analysis of Human Movement. Ann Biomed Eng.2010;38:269-79.. 66. Scheys L, Campenhout A V, Spaepen A, Suetens P, Jonkers I.Personalized MR-based Musculoskeletal Models Compared toRescaled Generic Models in the Presence of Increased FemoralAnteversion: Effecton Hip Moment Arm Lengths. Gait Posture.2008;28:358-65. 67. Donald P D, Shurr L, Jane C, Golden C, Meier K, NielsenC D. Comparison of Energy Cost and Gait Efficiency duringAmbulation in Below-knee Amputees Using Different ProstheticFeet. Iowa Orthop J.1988;8:95-100. 68. Dong F, Clapworthy G, Krokos M, Yao J. An Anatomy basedApproach to Human Muscle Modeling and Deformation. IEEETrans Vis Comput Graph. 2002;8:154-70. 69. Goujon H, Bonnet X, Sautreuil P, Maurrisset M, Darmon L,Fode P. A Functional Evaluation of Prosthetic Foot Kinematicsduring Lower-limb Amputee Gait. Prosthetics and OrthoticsInternational. 2006;30(2):213-23. 70. Wright A, Yoder D, Andriacchi T, Costa J. Characterization ofGait Parameters in Patients with Charcot-marie-tooth Disease.Neurol India. 2000;48:49-55. 71. Taga G. A Model of the Neuromusculo Skeletal System for AnticipatoryAdjustment of Human Locomotion during ObstacleAvoidance.Biol Cybern. 1998;78:9-17. 72. Taga G. A Model of the Neuro-musculo-skeletal System forHuman Locomotion Emergence of Basic Gait. Biol Cybern.1995;73:97-111. 73. Hooper S. Central Patterns Generators. Current Biology.2000;10(5):176-7. 74. Buchli J, Ijspeert AJ. Distributed Central Pattern Generator Modelfor Robotics Application based on Phase Sensitivity Analysis.In: The First International Workshop on Biologically InspiredApproaches toAdvanced Information Technology; 2003. 75. Full R, Abbas J. Biomechanics and Neural Control of Postureand Movement. J Biomech Eng. 2000. 76. Corazza S, Gambaretto E, M¨undermann L, Andriacchi TP.Automatic Generation of a Subject SpecificModel for AccurateMarkerless Motion Capture and Biomechanical Applications.IEEE Trans Biomed Eng. 2010;57:806-12. 77. Zielinska T. Coupled Oscillators Utilised as Gait Rhythm Generatorsof a Two Legged Walking Machine. Biological Cybernetics.1996;74:256-73. 78. Pandy M. Computer Modeling and Simulation of Human Movement.Annu Rev Biomed Eng. 2001;3:245-73. 79. Hatze H. Towards a Comprehensive Large-scale ComputerModel of the Human Neuromusculoskeletal System. TheoreticalIssues in Ergonomics Science. 2005;6:239-50. 80. Ivanov P, Stanleya E, Ashkenazya Y, Hausdor J. A StochasticModel of Human Gait Dynamics. Physica. 2002;316:662-70 | |