dc.creatorRiveros, Alain
dc.creatorSánchez Godoy, Jesús Armando
dc.creatorBuitrago, Natalia
dc.creatorCristancho, Edgar
dc.date2014-12-01
dc.date.accessioned2022-12-15T18:27:19Z
dc.date.available2022-12-15T18:27:19Z
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rmed/article/view/1171
dc.identifier10.18359/rmed.1171
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5357282
dc.descriptionLa importancia de la Epo como hormona central en los procesos de ambientación a la altura es clara dado su efecto estimulante sobre la producción  eritrocitaria. Su naturaleza hormonal ha llevado a que algunas investigaciones evalúen su circadianidad con reportes no contundentes e inclusive contradictorios al respecto. Objetivo: Analizar la circadianidad de la Epo en sujetos que realizan entrenamiento aeróbico en la altura intermedia (2600 msnm) comparando diferencias entre hombres y mujeres. Materiales y métodos: Se reclutaron residentes a la altura intermedia de por lo menos 18 meses, de ambos sexos y que tuvieran entrenamiento aeróbico al menos durante 8 meses previos a la realización del estudio para medir su Epo cada 4 horas durante 24 horas y correlacionarla con algunas variables fisiológicas y ambientales. Resultados: Existe comportamiento circadiano en la Epo tanto para hombres como para mujeres, con un mesor para hombres de 20:10 h y 16:33 h para mujeres. En cuanto a la acrofase, esta se presenta hacia las 17:52 h para hombres y a las 15:50 h para las mujeres. El análisis de diferencia de medias muestra una diferencia estadísticamente significativa entre los dos grupos Conclusión: Existe circadianidad diferencial entre hombres y mujeres en cuanto a sus niveles de Epo, la cual es independiente de variables fisiológicas y ambientales. Tema: Ritmo circadiano. Subtema: Eritropoyetina.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rmed/article/view/1171/903
dc.relation/*ref*/Jelkmann W. Erythropoietin after a century of research: younger than ever. Eur J Haematol 2007;78(3):183–205. 2. Stohlman F, Rath CE, Rose JC. Evidence for a humoral regulation of erythropoiesis; studies on a patient with polycythemia secondary to regional hypoxia. Blood 1954;9(7):721–33. 3. Erslev A. Evidence for a humoral regulation of erythropoiesis;studies on a patient with polycythemia secondary to regional hypoxia. Blood 1953;8(4):349–57. 4. Livnah O. Crystallographic Evidence for Preformed Dimers of Erythropoietin Receptor Before Ligand Activation. Science (80) 1999;283(5404):987–90. 5. Remy I. Erythropoietin Receptor Activation by a Ligand- Induced Conformation Change. Science (80- ) 1999; 283(5404):990–3. 6. Wenger RH, Kurtz A. Erythropoietin. Compr Physiol 2011; 1(4):1759–94. 7. Erslev A, Caro J, A B. Why the kidney? Nephron 1985;41(3): 213–6. 8. Koury ST, Koury MJ, Bondurant MC, Caro J, Graber E. Quantitation Hybridization: of Erythropoietin-Producing Correlation With Hematocrit, Serum Erythropoietin Cells in Kidneys of Mice Renal Erythropoietin Concentration. Blood 1989;74(2):645–51. 9. Maxwell PH, Pugh CW, Ratcliffe PJ. Inducible operation of the erythropoietin 3’ enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci U S A 1993;90(6):2423–7. 10. Schibler U, Ripperger J, Brown SA. Peripheral Circadian Oscillators in Mammals: Time and Food. J Biol Rhythms 2003;18(3):250–60. 11. Buhr ED, Takahashi JS. Molecular components of the Mammalian circadian clock. Handb Exp Pharmacol 2013;(217):3– 27. 12. Smith E. Health and disease: as influenced by the daily, seasonal, and other cyclical changes in the human system. London: Walton and Maberly; 1861. 13. Hurwitz S, Cohen RJ, Williams GH. Diurnal variation of aldosterone and plasma renin activity: timing relation to melatonin and cortisol and consistency after prolonged bed rest. J Appl Physiol 2004;96(4):1406–14. 14. Koene R, van Liebergen F, Wijdeveld P. Normal diurnal rhythm in the excretion of water and electrolytes after renal transplantation. Clin Nephrol 1973;1(4):266–70. 15. Firsov D, Bonny O. Circadian regulation of renal function. Kidney Int 2010;78(7):640–5. 16. Cotes PM, Brozovic B. Diurnal variation of serum immunoreactive erythropoietin in a normal subject. Clin Endocrinol (Oxf) 1982;17:419–22. 17. Wide L, Bengtsson C, Birgegård G. Circadian rhythm of erythropoietin in human serum. Br. J. Haematol. 1989;72(1):85–90. 18. Klausen T, Poulsen TD, Fogh-Andersen N, Richalet JP, Nielsen OJ, Olsen N V. Diurnal variations of serum erythropoietin at sea level and altitude. Eur J Appl Physiol Occup Physiol 1996;72(4):297–302. 19. Miller ME, Garcia JF, Cohen R a, Cronkite EP, Moccia G, Acevedo J. Diurnal levels of immunoreactive erythropoietin in normal subjects and subjects with chronic lung disease. Br. J. Haematol. 1981;49(2):189–200. 20. Roberts D, Smith DJ. Erythropoietin does not demonstrate in healthy men circadian rhvthm. J Appl Physiol 1996;80(3):847–51. 21. Gunga H, Kirsch K, Baartz F, et al. Erythropoietin under real and simulated microgravity conditions in humans. J Appl Physiol 1985;81(2):761–73. 22. Böning D, Rojas J, Serrato M, et al. Hemoglobin mass and peak oxygen uptake in untrained and trained residents of moderate altitude. Int J Sports Med 2001;22(8):572–8. 23. Refinetti R, Lissen GC, Halberg F. Procedures for numerical analysis of circadian rhythms. Biol Rhythm Res [Internet] 2007 [cited 2013 Nov 11];38(4):275–325. 24. Revelle W. psych: Procedures for Personality and Psychological Research, NorthwesternUniversity. 2013. 25. Team RC. R: A language and environment for statistical computing. 2013; 26. Jammalamadaka SR, Sengupta A. Topics in Circular Statistics.1st ed. World Scientific Pub Co Inc; 2001. 336 p. 27. Agostinelli C, Lund U. R package “circular”: Circular Statistics (version 0.4-7). 2013; 28. Hammer Ø, Harper D, Ryan P. Paleontological statistics software package for education and data analysis. Palaeontol Electron 2001;4(1):9. 29. Atkinson G, Coldwells A, Reilly T, Waterhouse J. A comparison of circadianrhythms in work performance between physically active and inactive subjects. Ergonomics. 1993 Jan- Mar;36(1-3):273-81. 30. Ruff C. Variation in human body size and shape. Annu. Rev. Anthropol. 2002. 31:211–32. 31. Cheng CK-W, Chan J, Cembrowski GS, van Assendelft OW. Complete blood count reference interval diagrams derived from NHANES III: stratification by age, sex, and race. Lab Hematol [Internet] 2004 [cited 2013 Dec 1];10(1):42–53. 32. Saxena S, Wong ET. Heterogeneity of common hematologic parameters among racial, ethnic, and gender subgroups. Arch Pathol Lab Med [Internet] 1990 [cited 2013 Dec 1];114(7):715–9. 33. Nelson W, Tong Y, Lee J, Halberg F. Methods for cosinor-rhythmometry. Chronobiologia 1979;6(4):305–23. 34. Pasqualetti P, Casale R. No influence of aging on the circadian rhythm of erythropoietin in healthy subjects. Gerontology 1997;43(4):206–9. 35. Cotes PM. The Estimation of Erythropoietin (Epo): Principles, Problems and Progress. In: Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis. Springer Berlin Heidelberg; 1987. p. 377–87. 36. Fitzpatrick MF, Mackay T, Whyte KF, et al. Nocturnal desaturation and serum erythropoietin: a study in patients with chronic obstructive pulmonary disease and in normal subjects. Clin Sci (Lond) 1993;84(3):319–24. 37. Pasqualetti P, Collacciani a, Casale R. Circadian rhythm of serum erythropoietin in multiple myeloma. Am J Hematol 1996;53(1):40–2. 38. Stow LR, Gumz ML. The circadian clock in the kidney. J Am Soc Nephrol 2011;22(4):598–604. 39. Anderson GB, Bell ML, Peng RD. Methods to calculate the heat index as an exposure metric in environmental health research. Environ Health Perspect [Internet] 2013 [cited 2013 Dec 2];121(10):1111–9. 40. Halonen JI, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J. Relationship between outdoor temperature and blood pressure. Occup Environ Med [Internet] 2011 [cited 2013 Dec 2];68(4):296–301. 41. Wallach T, Schellenberg K, Maier B, et al. Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions. PLoS Genet 2013;9(3):e1003398.
dc.rightsDerechos de autor 2015 Revista Medes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourceRevista Med; Vol. 22 No. 2 (2014): july - december; 37-48en-US
dc.sourceRevista Med; Vol. 22 Núm. 2 (2014): julio - diciembre; 37-48es-ES
dc.source1909-7700
dc.source0121-5256
dc.subjectritmo circadianoes-ES
dc.subjecteritropoyetinaes-ES
dc.subjectambientaciónes-ES
dc.subjectaltura intermediaes-ES
dc.titleEvidencia del comportamiento circadiano de la EPO con dependencia del sexo e independencia de parámetros fisiológicos en jóvenes entrenados en la altura moderadaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución