Género Aspergillus: fuente potencial de péptidos bioactivos;
Gênero Aspergillus: fonte potencial de peptídeos bioativos

dc.creatorGómez Rojas, Marcela Patricia
dc.creatorArboleda Valencia, Jorge William
dc.creatorMosquera Martínez, Oscar Marino
dc.date2021-11-19
dc.date.accessioned2022-12-15T18:17:37Z
dc.date.available2022-12-15T18:17:37Z
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rfcb/article/view/5610
dc.identifier10.18359/rfcb.5610
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5356279
dc.descriptionAspergillus genus fungi are cosmopolitan distribution filamentous molds, which take part in different processes in the nature. The use of this genus has been reported in fermentations with various substrates to produce bioactive peptides or obtain other types of beneficial metabolites. In human health, peptides are used for the different biological activities they exhibit, and their easy intestinal absorption. Therefore, a bibliographic review was carried out following the Prism method, using the search equation “bioactive peptides” AND “Aspergillus” in the Scopus, Web of Science and Lens databases, in order to consolidate the information related to the genus and its peptide production. The search yielded 113 articles, from which 11 articles were selected, which indicated that only five species of the Aspergillus genus have been analyzed regarding their bioactive peptides obtained in fermentations. Aspergillus niger and Aspergillus oryzae are the most studied. It was concluded that the Aspergillus genus is a potential source of bioactive peptides. On the other hand, the article is one of the first to synthesize and analyze information on bioactive peptides derived from fermentations with this fungus, so it opens up prospects to carry out similar research and accompany advances in this area.en-US
dc.descriptionLos hongos del género Aspergillus son mohos filamentosos de distribución cosmopolita que participan en diferentes procesos en la naturaleza. Se ha reportado el uso de este género en fermentaciones con diversos sustratos para producir péptidos bioactivos u obtener otro tipo de metabolitos benéficos. En la salud humana, los péptidos son utilizados por las diferentes actividades biológicas que estos exhiben y su fácil absorción intestinal. Por lo anterior, se realizó una revisión bibliográfica siguiendo el método Prisma, utilizando la ecuación de búsqueda “bioactive peptides” AND “Aspergillus” en las bases de datos Scopus, Web of Science y Lens, con el fin de consolidar la información relacionada con el género y su producción de péptidos. La búsqueda arrojó 113 artículos, de los cuales se seleccionaron once, que indicaban que tan solo cinco especies del género Aspergillus han sido analizadas con respecto a sus péptidos bioactivos, obtenidos en fermentaciones. Aspergillus niger y Aspergillus oryzae son los más estudiados. Se concluye, que el género Aspergillus es una fuente potencial de péptidos bioactivos. Por otro lado, el artículo es uno de los primeros en sintetizar y analizar la información sobre péptidos bioactivos derivados de fermentaciones con este hongo, por lo que abre perspectivas para llevar a cabo investigaciones similares y acompañar los avances en esta área.es-ES
dc.descriptionOs fungos do gênero Aspergillus são moldes filamentosos de distribuição cosmopolita, que participam de diferentes processos na natureza. O uso deste gênero tem sido relatado em fermentações com vários substratos, para produzir peptídeos bioativos ou obter outros tipos de metabólitos benéficos. Na saúde humana, os peptídeos são usados devido às diferentes atividades biológicas que exibem e sua fácil absorção intestinal. Para tanto, foi realizada uma revisão bibliográfica seguindo o método de Prisma, utilizando a equação de busca “bioactive peptides” AND “Aspergillus” nas bases de dados Scopus, Web of Science e Lens, a fim de consolidar informações relacionadas ao gênero e sua produção de peptídeos. A busca resultou em 113 artigos, dos quais 11 artigos foram selecionados, indicando que apenas cinco espécies do gênero Aspergillus foram analisadas em relação aos seus peptídeos bioativos obtidos na fermentação. Aspergillus niger e Aspergillus oryzae são os mais estudados. Conclui-se que o gênero Aspergillus é uma fonte potencial de peptídeos bioativos. Por sua vez, o artigo foi um dos primeiros a sintetizar e analisar informações sobre peptídeos bioativos derivados da fermentação com este fungo, abrindo perspectivas para a realização de pesquisas semelhantes e acompanhando os avanços nessa área.pt-BR
dc.formatapplication/pdf
dc.formattext/xml
dc.languagespa
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rfcb/article/view/5610/4878
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rfcb/article/view/5610/4915
dc.relation/*ref*/F. Lamoth, P. R. Juvvadi y W. J. Steinbach, "Editorial. Advances in Aspergillus fumigatus pathobiology", Frontiers in Microbiology, vol. 7, 2016. DOI: https://doi.org/10.3389/fmicb.2016.00043
dc.relation/*ref*/A. M. Abdel-Azeem, M. A. Abdel-Azeem, S. Y. Abdul-Hadi y A. G. Darwish, "Aspergillus. Biodiversity, ecological significances, and industrial applications". En A. N. Yadav et al. (Eds.), Recent advancement in white biotechnology through fungi, Springer, 2019, pp. 121-179. DOI: https://doi.org/10.1007/978-3-030-10480-1_4
dc.relation/*ref*/S. L. Bahna, R. D'Mello y S. Kilaikode, "Allergic bronchopulmonary aspergillosis", Int. J. Immunorehabil., vol. 21, n.° 1, pp. 3-7, 2019. DOI: https://doi.org/10.22363/2313-0245-2019-23-1-62-69
dc.relation/*ref*/L. Alcalá, P. Muñoz, T. Peláez y E. Bouza, "Aspergillus y aspergilosis", 2018. https://www.seimc.org/contenidos/ccs/revisionestematicas/micologia/asperguillus.pdf
dc.relation/*ref*/R. J. Lee et al., "Fungal aflatoxins reduce respiratory mucosal ciliary function", Sci. Rep., vol. 6, n.° 1, pp. 1-13, 2016. DOI: https://doi.org/10.1038/srep33221
dc.relation/*ref*/P. L. Show, K. O. Oladele, Q. Y. Siew, F. A. Aziz Zakry, J. C.-W. Lan y T. C. Ling, "Overview of citric acid production from Aspergillus niger", Front. Life Sci., vol. 8, n.° 3, pp. 271-283, 2015. DOI: https://doi.org/10.1080/21553769.2015.1033653
dc.relation/*ref*/P. Hahn, A. Kasprzycka y W. Szeja, "Synthesis of 2-deoxygalactopyranoside derivatives of benzyl alcohols with β-galactosidase from Aspergillus oryzae", Biocatal. Biotransformation, vol. 32, n.° 5-6, pp. 290-294, 2014. DOI: https://doi.org/10.3109/10242422.2014.975216
dc.relation/*ref*/K. M. Kim, J. Lim, J. J. Lee, B. S. Hurh y I. Lee, "Characterization of Aspergillus sojae isolated from meju, korean traditional fermented soybean brick", J. Microbiol. Biotechnol., vol. 27, n.° 2, pp. 251-261, 2017. DOI: https://doi.org/10.4014/jmb.1610.10013
dc.relation/*ref*/M. A. Lima, M. D. de Oliveira, A. T. Pimenta y P. K. Uchôa, "Aspergillus Niger. A hundred years of contribution to the natural products chemistry", Journal of the Brazilian Chemical Society, vol. 30, n.° 10. pp. 2029-2059, 2019. DOI: https://doi.org/10.21577/0103-5053.20190080
dc.relation/*ref*/K. F. Nielsen, J. M. Mogensen, M. Johansen, T. O. Larsen y J. C. Frisvad, "Review of secondary metabolites and mycotoxins from the Aspergillus niger group", Analytical and Bioanalytical Chemistry, vol. 395, n.° 5. pp. 1225-1242, 2009. DOI: https://doi.org/10.1007/s00216-009-3081-5
dc.relation/*ref*/B. Dhandapani, S. Mahadevan y S. Muthiah, "Conversion of agro by-products to an alkaline protease by Aspergillus tamarii and the usefulness of its metabolic heat for better process understanding", Waste and Biomass Valorization, vol. 11, n.° 6, pp. 2623-2629, 2020. DOI: https://doi.org/10.1007/s12649-019-00608-x
dc.relation/*ref*/N. Gonsales, A. C. Rodrigues, V. N. Hirano, A. Rodrigues y H. Cabral, "Amino acid supplementation improves the production of extracellular peptidases by Aspergillus Section Flavi and their ionic immobilization Benevides Costa Pessela 3", Brazilian Arch. Biol. Technol., vol. 63, p. 2020, 2020. DOI: https://doi.org/10.1590/1678-4324-2020190127
dc.relation/*ref*/A. Balakrishnan et al., "Evaluation of in vitro activities of extracellular enzymes from Aspergillus species isolated from corneal ulcer/keratitis", Saudi J. Biol. Sci., vol. 27, n.° 2, pp. 701-705, 2020. DOI: https://doi.org/10.1016/j.sjbs.2019.11.023
dc.relation/*ref*/E. A. Beltagy, M. Rawway, U. M. Abdul-Raouf, M. A. Elshenawy y M. S. Kelany, "Purification and characterization of theromohalophilic chitinase producing by halophilic Aspergillus flavus isolated from Suez Gulf", Egypt. J. Aquat. Res., vol. 44, n.° 3, pp. 227-232, 2018. DOI: https://doi.org/10.1016/j.ejar.2018.08.002
dc.relation/*ref*/A. O. Adejuwon, V. A. Tsygankova y O. Alonge, "Effect of cultivation conditions on activity of α-amylase from a tropical strain Aspergillus flavus link", J. Microbiol. Biotechnol. Food Sci., vol. 7, n.° 6, pp. 571-575, 2018. DOI: https://doi.org/10.15414/jmbfs.2018.7.6.571-575
dc.relation/*ref*/G. Anand, S. Yadav y D. Yadav, "Purification and biochemical characterization of an exo-polygalacturonase from Aspergillus flavus MTCC 7589", Biocatal. Agric. Biotechnol., vol. 10, pp. 264-269, 2017. DOI: https://doi.org/10.1016/j.bcab.2017.03.018
dc.relation/*ref*/J. Tang et al., "Improved protease activity of pixian broad bean paste with cocultivation of Aspergillus oryzae QM-6 and Aspergillus niger QH-3", Electron. J. Biotechnol., vol. 44, pp. 33-40, 2020. DOI: https://doi.org/10.1016/j.ejbt.2020.01.001
dc.relation/*ref*/K. Ichikawa et al., "Efficient production of recombinant tannase in Aspergillus oryzae using an improved glucoamylase gene promoter", J. Biosci. Bioeng., vol. 129, n.° 2, pp. 150-154, 2020. DOI: https://doi.org/10.1016/j.jbiosc.2019.08.002
dc.relation/*ref*/K. Jatuwong, N. Suwannarach, J. Kumla, W. Penkhrue, P. Kakumyan y S. Lumyong, "Bioprocess for production, characteristics y biotechnological applications of fungal phytases", Frontiers in Microbiology, vol. 11, pp. 1-18, 2020. DOI: https://doi.org/10.3389/fmicb.2020.00188
dc.relation/*ref*/A. Ahmed, R. Badar y N. Khalique, "Screening and optimization of submerged fermentation of lipolytic Aspergillus oryzae", BioResources, vol. 14, n.° 4, pp. 7664-7674, 2019. DOI: https://www.doi.org/10.15376/biores.14.4.7664-7674
dc.relation/*ref*/J. S. Cunha, C. A. Ottoni, S. A. Morales, E. S. Silva, A. E. Maiorano y R. F. Perna, "Synthesis and characterization of fructosyltransferase from Aspergillus oryzae IPT-301 for high fructooligosaccharides production", Brazilian J. Chem. Eng., vol. 36, n.° 2, pp. 657-668, 2019. DOI: https://doi.org/10.1590/0104-6632.20190362s20180572
dc.relation/*ref*/N. Bhardwaj, B. Kumar, K. Agarwal, V. Chaturvedi y P. Verma, "Purification and characterization of a thermo-acid/alkali stable xylanases from Aspergillus oryzae LC1 and its application in Xylo-oligosaccharides production from lignocellulosic agricultural wastes", Int. J. Biol. Macromol., vol. 122, pp. 1191-1202, 2019. DOI: https://doi.org/10.1016/j.ijbiomac.2018.09.070
dc.relation/*ref*/J. Škerlová et al., "Crystal structure of native β-N-acetylhexosaminidase isolated from Aspergillus oryzae sheds light onto its substrate specificity, high stability y regulation by propeptide", FEBS J., vol. 285, n.° 3, pp. 580-598, 2018. DOI: https://doi.org/10.1111/febs.14360
dc.relation/*ref*/Y. Zhu, H. Jia, M. Xi, J. Li, L. Yang y X. Li, "Characterization of a naringinase from Aspergillus oryzae 11250 and its application in the debitterization of orange juice", Process Biochem., vol. 62, pp. 114-121, 2017. DOI: https://doi.org/10.1016/j.procbio.2017.07.012
dc.relation/*ref*/K. D. Wang, K. H. Wang, N. Di Zhou y Y. P. Tian, "Secretory expression, purification, characterization y application of an Aspergillus oryzae prolyl aminopeptidase in bacillus subtilis", Appl. Biochem. Biotechnol., vol. 181, n.° 4, pp. 1611-1623, 2017. DOI: https://doi.org/10.1007/s12010-016-2305-3
dc.relation/*ref*/P. R. Heinen et al., "GH11 xylanase from Aspergillus tamarii Kita. Purification by one-step chromatography and xylooligosaccharides hydrolysis monitored in real-time by mass spectrometry", Int. J. Biol. Macromol., vol. 108, pp. 291-299, 2018. DOI: https://doi.org/10.1016/j.ijbiomac.2017.11.150
dc.relation/*ref*/A. R. de Sena et al., "Kinetic, thermodynamic parameters and in vitro digestion of tannase from Aspergillus tamarii URM 7115", Chem. Eng. Commun., vol. 205, n.° 10, pp. 1415-1431, 2018. DOI: https://doi.org/10.1080/00986445.2018.1452201
dc.relation/*ref*/E. Liu, M. Li, A. Abdella y M. R. Wilkins, "Development of a cost-effective medium for submerged production of fungal aryl alcohol oxidase using a genetically modified Aspergillus nidulans strain", Bioresour. Technol., vol. 305, 2020. DOI: https://doi.org/10.1016/j.biortech.2020.123038
dc.relation/*ref*/Y. Khambhaty, R. Akshaya, C. Rama Suganya, K. J. Sreeram y J. Raghava Rao, "A logical and sustainable approach towards bamboo pulp bleaching using xylanase from Aspergillus nidulans", Int. J. Biol. Macromol., vol. 118, pp. 452-459, 2018. DOI: https://doi.org/10.1016/j.ijbiomac.2018.06.100
dc.relation/*ref*/B. R. Shruthi, R. N. Achur y T. Nayaka, "Optimized solid-state fermentation medium enhances the multienzymes production from Penicillium citrinum and Aspergillus clavatus", Curr. Microbiol., vol. 1, p. 3, 2020. DOI: https://doi.org/10.1007/s00284-020-02036-w
dc.relation/*ref*/D. N. Putri, A. Khootama, M. S. Perdani, T. S. Utami y H. Hermansyah, "Optimization of Aspergillus niger lipase production by solid state fermentation of agroindustrial waste", Energy Reports, vol. 6, pp. 331-335, 2020. DOI: https://doi.org/10.1016/j.egyr.2019.08.064
dc.relation/*ref*/S. Xing, R. Zhu, C. Li, L. He, X. Zeng y Q. Zhang, "Gene cloning, expression, purification and characterization of a sn-1,3 extracellular lipase from Aspergillus niger GZUF36", J. Food Sci. Technol., vol. 57, n.° 7, pp. 2669-2680, 2020. DOI: https://doi.org/10.1007/s13197-020-04303-x
dc.relation/*ref*/A. Kaur, V. Rishi, S. Kumar Soni y P. Rishi, "A novel multi-enzyme preparation produced from Aspergillus niger using biodegradable waste: a possible option to combat heterogeneous biofilms", AMB Express, vol. 10, n.° 36, 2020. DOI: https://doi.org/10.1186/s13568-020-00970-3
dc.relation/*ref*/M. Zhao, X. Y. Wang, S. H. Xu, G. Q. Yuan, X. J. Shi y Z. H. Liang, "Degradation of ochratoxin A by supernatant and ochratoxinase of Aspergillus niger W-35 isolated from cereals ", World Mycotoxin J., vol. 13, n.° 2, pp. 287-298, 2020. DOI: https://doi.org/10.3920/WMJ2019.2446
dc.relation/*ref*/M. Germec y I. Turhan, "Evaluation of carbon sources for the production of inulinase by Aspergillus niger A42 and its characterization", Bioprocess Biosyst. Eng., vol. 42, n.° 12, pp. 1993-2005, 2019. DOI: https://doi.org/10.1007/s00449-019-02192-9
dc.relation/*ref*/R. D. Martarello et al., "Optimization and partial purification of beta-galactosidase production by Aspergillus niger isolated from Brazilian soils using soybean residue", AMB Express, vol. 9, n.° 1, 2019. DOI: https://doi.org/10.1186/s13568-019-0805-6
dc.relation/*ref*/X. Chen, B. Wang y L. Pan, "Heterologous expression and characterization of Penicillium citrinum nuclease P1 in Aspergillus niger and its application in the production of nucleotides", Protein Expr. Purif., vol. 156, pp. 36-43, 2019. DOI: https://doi.org/10.1016/j.pep.2018.12.004
dc.relation/*ref*/D. E. Nayab, M. Z. Haider, S. Shahid, y T. Iftikhar, "In silico phylogenetic analysis of fungal lipase genes and harnessing the inherent potential of Aspergillus niger IBP2013 for extracellular triglycerol acyl-hydrolase production under solid state fermentation", Pakistan Journal of Botany, vol. 50, n.° 5, pp. 2019-2029, 2018.
dc.relation/*ref*/M. R. Javed, M. H. Rashid, M. Riaz, H. Nadeem, M. Qasim y N. Ashiq, "Physiochemical and thermodynamic characterization of highly active mutated Aspergillus niger β-glucosidase for lignocellulose hydrolysis", Protein Pept. Lett., vol. 25, 2018. DOI: https://doi.org/10.2174/0929866525666180130161504
dc.relation/*ref*/U. S. P. Uday et al., "Isolation, screening and characterization of a novel extracellular xylanase from Aspergillus niger (KP874102.1) and its application in orange peel hydrolysis", Int. J. Biol. Macromol., vol. 105, pp. 401-409, 2017. DOI: https://doi.org/10.1016/j.ijbiomac.2017.07.066
dc.relation/*ref*/P. Agarwal, J. Singh y R. P. Singh, "Molecular cloning and characteristic features of a novel extracellular tyrosinase from Aspergillus niger PA2", Appl. Biochem. Biotechnol., vol. 182, n.° 1, 2017. DOI: https://doi.org/10.1007/s12010-016-2306-2
dc.relation/*ref*/M. M. El-Metwally y Y. M. M. Mohammed, "Production and application of thermostable glucoamylase from thermotolerant Aspergillus fumigatus via semisolid state fermentation", Egypt. J. Bot., vol. 59, n.° 3, pp. 811-826, 2019.
dc.relation/*ref*/R. M. F. Cavalcanti, J. A. Jorge y L. H. Guimarães, "Characterization of Aspergillus fumigatus CAS-21 tannase with potential for propyl gallate synthesis and treatment of tannery effluent from leather industry", 3 Biotech, vol. 8, n.° 6, 2018. DOI: https://doi.org/10.1007/s13205-018-1294-z
dc.relation/*ref*/C. Lin, Z. Shen y W. Qin, "Characterization of xylanase and cellulase produced by a newly isolated Aspergillus fumigatus N2 and its efficient saccharification of barley straw", Appl. Biochem. Biotechnol., vol. 182, n.° 2, pp. 559-569, 2017. DOI: https://doi.org/10.1007/s12010-016-2344-9
dc.relation/*ref*/C. Elena, P. Ravasi, M. E. Castelli, S. Peirú y H. G. Menzella, "Expression of codon optimized genes in microbial systems. Current industrial applications and perspectives", Frontiers in Microbiology, vol. 5, pp. 1-21, 2014. DOI: https://doi.org/10.3389/fmicb.2014.00021
dc.relation/*ref*/L. R. Torres, M. T. Álvarez, G. Mendoza y G. Aguilar, "Analysis of polysaccharide hydrolases secreted by Aspergillus flavipes FP-500 on corn cobs and wheat bran as complex carbon sources", Prep. Biochem. Biotechnol., vol. 50, n.° 4, pp. 390-400, 2020. DOI: https://doi.org/10.1080/10826068.2019.1700518
dc.relation/*ref*/V. E. Wolf-Márquez et al., "Scaling-up and ionic liquid-based extraction of pectinases from Aspergillus flavipes cultures", Bioresour. Technol., vol. 225, pp. 326-335, 2017. DOI: https://doi.org/10.1016/j.biortech.2016.11.067
dc.relation/*ref*/F. M. Aracri, R. M. F. Cavalcanti y L. H. S. Guimarães, "Extracellular tannase from Aspergillus ochraceus. Influence of the culture conditions on biofilm formation, enzyme production y application", J. Microbiol. Biotechnol., vol. 29, n.° 11, pp. 1749-1759, 2019. DOI: https://doi.org/10.4014/jmb.1903.03060
dc.relation/*ref*/L. M. Tódero, C. G. Rechia y L. H. Guimarães, "Production of short-chain fructooligosaccharides (scFOS) using extracellular β-D-fructofuranosidase produced by Aspergillus thermomutatus", J. Food Biochem., vol. 43, n.° 8, 2019. DOI: https://doi.org/10.1111/jfbc.12937
dc.relation/*ref*/S. Netsopa, S. Niamsanit, T. Araki, M. B. Kongkeitkajorn y N. Milintawisamai, "Purification and characterization including dextran hydrolysis of dextranase from Aspergillus allahabadii X26", Sugar Tech, vol. 21, n.° 2, pp. 329-340, 2019. DOI: https://doi.org/10.1007/s12355-018-0652-9
dc.relation/*ref*/D. Stack, C. Neville y S. Doyle, "Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi", Microbiology, vol. 153, n.° 5. Microbiology Society, pp. 1297-1306, 2007. DOI: https://doi.org/10.1099/mic.0.2006/006908-0
dc.relation/*ref*/J. Soltani, "Secondary metabolite diversity of the genus Aspergillus: Recent Advances". En V. K. Gupta (Ed) New and future developments in microbial biotechnology and bioengineering: Aspergillus system properties and applications, V. K. Gupta, Ed. Amsterdam: Elsevier, 2016, pp. 275-292. DOI: https://doi.org/10.1016/B978-0-444-63505-1.00035-X
dc.relation/*ref*/N. Nagano et al., "Class of cyclic ribosomal peptide synthetic genes in filamentous fungi", Fungal Genet. Biol., vol. 86, pp. 58-70, 2016. DOI: https://doi.org/10.1016/j.fgb.2015.12.010
dc.relation/*ref*/Y. Zhang, M. Chen, S. D. Bruner y Y. Ding, "Heterologous production of microbial ribosomally synthesized and post-translationally modified peptides", Frontiers in Microbiology, vol. 9, p. 1801, 2018. DOI: https://doi.org/10.3389/fmicb.2018.01801
dc.relation/*ref*/Y. Le Govic, N. Papon, S. Le Gal, J.-P. Bouchara y P. Vandeputte, "Non-ribosomal peptide synthetase gene clusters in the human pathogenic fungus Scedosporium apiospermum", Front. Microbiol., vol. 10, p. 2062, 2019. DOI: https://doi.org/10.3389/fmicb.2019.02062
dc.relation/*ref*/A. Miyanaga, F. Kudo y T. Eguchi, "Protein-protein interactions in polyketide synthase-nonribosomal peptide synthetase hybrid assembly lines", Natural Product Reports, vol. 35, n.° 11, pp. 1185-1209, 2018. DOI: https://doi.org/10.1039/C8NP00022K
dc.relation/*ref*/J. A. Cortés y J. A. Russi N, "Equinocandinas", Rev. Chil. infectología, vol. 28, n.° 6, pp. 529-536, Dec. 2011. DOI: https://doi.org/10.4067/S0716-10182011000700004
dc.relation/*ref*/A. P. Majumdar, "Echinocandins in antifungal pharmacotherapy", J. Pharm. Pharmacol., vol. 69, n.° 12, p. 12, 2017. DOI: https://doi.org/10.1111/jphp.12780
dc.relation/*ref*/J. A. Cortés y J. A. Russi, "Equinocandinas", Revista Chilena de Infectologia, vol. 28, n.° 6, pp. 529-536, 2011. DOI: https://doi.org/10.4067/S0716-10182011000700004
dc.relation/*ref*/M. A. Lima, M. D. de Oliveira, A. T. Pimenta y P. K. Uchôa, "Aspergillus niger. A hundred years of contribution to the natural products chemistry", Journal of the Brazilian Chemical Society, vol. 30, n.° 10, pp. 2029-2059, 2019. DOI: https://doi.org/10.21577/0103-5053.20190080
dc.relation/*ref*/Y. Zhuang et al., "Cyclopeptides and polyketides from coral-associated fungus, Aspergillus versicolor LCJ-5-4", Tetrahedron, vol. 67, n.° 37, pp. 7085-7089, 2011. DOI: https://doi.org/10.1016/j.tet.2011.07.003
dc.relation/*ref*/X. Bin Li, Y. L. Li, J. C. Zhou, H. Q. Yuan, X. N. Wang y H. X. Lou, "A new diketopiperazine heterodimer from an endophytic fungus Aspergillus Niger", J. Asian Nat. Prod. Res., vol. 17, n.° 2, pp. 182-187, 2015. DOI: https://doi.org/10.1080/10286020.2014.959939
dc.relation/*ref*/H. Ma et al., "A new diketopiperazine from an endophytic fungus Aspergillus aculeatus F027", Nat. Prod. Res., 2019. DOI: https://doi.org/10.1080/14786419.2019.1677652
dc.relation/*ref*/X. Liang, X. Zhang, X. Lu, Z. Zheng, X. Ma y S. Qi, "Diketopiperazine-type alkaloids from a deep-sea-derived Aspergillus puniceus fungus and their effects on liver X receptor α", J. Nat. Prod., vol. 82, n.° 6, pp. 1558-1564, 2019. DOI: https://doi.org/10.1021/acs.jnatprod.9b00055
dc.relation/*ref*/X. Luo et al., "Structurally diverse diketopiperazine alkaloids from the marine-derived fungus: Aspergillus versicolor SCSIO 41016", Org. Chem. Front., vol. 6, n.° 6, pp. 736-740, 2019. DOI: https://doi.org/10.1039/C8QO01147H
dc.relation/*ref*/H. Wen et al., "Three new indole diketopiperazine alkaloids from Aspergillus ochraceus", Chem. Biodivers., vol. 15, n.° 4, 2018. DOI: https://doi.org/10.1002/cbdv.201700550
dc.relation/*ref*/A. Kaur et al., "New diketopiperazine dimer from a filamentous fungal isolate of Aspergillus sydowii", Magn. Reson. Chem., vol. 53, n.° 8, pp. 616-619, 2015. DOI: https://doi.org/10.1002/mrc.4254
dc.relation/*ref*/S. Cai et al., "Okaramines S-U, three new indole diketopiperazine alkaloids from Aspergillus taichungensis ZHN-7-07", Tetrahedron, vol. 71, n.° 22, pp. 3715-3719, 2015. DOI: https://doi.org/10.1016/j.tet.2014.09.019
dc.relation/*ref*/S. Cai et al., "Erratum. Aspergilazine A, a diketopiperazine dimer with a Rare N-1 to C-6 linkage, from a marine-derived fungus Aspergillus taichungensis (Tetrahedron Letters (2012) 53 (2615-2617))", Tetrahedron Letters, vol. 55, n.° 39, p. 5404, 2014. DOI: https://doi.org/10.1016/j.tetlet.2014.07.001
dc.relation/*ref*/M. Shaaban, M. M. El-Metwally y H. Nasr, "A new diketopiperazine alkaloid from Aspergillus oryzae", Nat. Prod. Res., vol. 28, n.° 2, pp. 86-94, 2014. DOI: https://doi.org/10.1080/14786419.2013.841687
dc.relation/*ref*/H. Drechsel y G. Jung, "Peptide siderophores", Journal of Peptide Science, vol. 4, n.° 3, pp. 147-181, 1998. DOI: https://doi.org/10.1002/(SICI)1099-1387(199805)4:3<147::AID-PSC136>3.0.CO;2-C
dc.relation/*ref*/A. H. Hissen, A. N. Wan, M. L. Warwas, L. J. Pinto y M. M. Moore, "The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence", Infect. Immun., vol. 73, n.° 9, pp. 5493-5503, 2005. DOI: https://doi.org/10.1128/IAI.73.9.5493-5503.2005
dc.relation/*ref*/A. Beneduzi, A. Ambrosini y L. M. Passaglia, "Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents", 2012. https://lume.ufrgs.br/handle/10183/87984?locale-attribute=es
dc.relation/*ref*/S. S. ALI and V. NN, "Evaluation of siderophore produced by different clinical isolate pseudomonas aeruginosa", Int. J. Microbiol. Res., vol. 3, n.° 3, pp. 131-135, 2011. DOI: https://doi.org/10.9735/0975-5276.3.3.131-135
dc.relation/*ref*/N. A. Furtado, M. T. Pupo, I. Carvalho, V. L. Campo, M. C. Duarte y J. K. Bastos, "Diketopiperazines produced by an Aspergillus fumigatus Brazilian strain", J. Braz. Chem. Soc., vol. 16, n.° 6B, pp. 1448-1453, 2005. DOI: https://doi.org/10.1590/S0103-50532005000800026
dc.relation/*ref*/Y. Ding, X. Zhu, L. Hao, M. Zhao, Q. Hua y F. An, "Bioactive indolyl diketopiperazines from the marine derived endophytic Aspergillus versicolor DY180635", Mar. Drugs, vol. 18, n.° 7, 2020. DOI: https://doi.org/10.3390/md18070338
dc.relation/*ref*/M. Rethlefsen et al., "PRISMA-S: An Extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews". OSF Preprints, 20, 2019. DOI: https://doi.org/10.31219/osf.io/sfc38
dc.relation/*ref*/L. Pastrana, "Fundamentos de la fermentación en estado sólido y aplicación a la industria alimentaria", Cienc. y Tecnol. Aliment., vol. 1, n.° 3, pp. 4-12, 1996. DOI: https://doi.org/10.1080/11358129609487556
dc.relation/*ref*/K. Sato, S. Miyasaka, A. Tsuji y H. Tachi, "Isolation and characterization of peptides with dipeptidyl peptidase IV (DPPIV) inhibitory activity from natto using DPPIV from Aspergillus oryzae", Food Chem., vol. 261, pp. 51-56, 2018. DOI: https://doi.org/10.1016/j.foodchem.2018.04.029
dc.relation/*ref*/M. R. Zanutto-Elgui et al., "Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases", Food Chem., vol. 278, pp. 823-831, 2019. DOI: https://doi.org/10.1016/j.foodchem.2018.11.119
dc.relation/*ref*/M. B. O'Keeffe, R. Norris, M. A. Alashi, R. E. Aluko y R. J. FitzGerald, "Peptide identification in a porcine gelatin prolyl endoproteinase hydrolysate with angiotensin converting enzyme (ACE) inhibitory and hypotensive activity", J. Funct. Foods, vol. 34, pp. 77-88, 2017. DOI: https://doi.org/10.1016/j.jff.2017.04.018
dc.relation/*ref*/A. E. Alves, L. Carvalho, G. Boscariol y R. J. Soares, "Solid-state fermentation as an efficient strategy for the biotransformation of lentils: enhancing their antioxidant and antidiabetic potentials", Bioresour. Bioprocess., vol. 6, n.° 1, 2019. DOI: https://doi.org/10.1186/s40643-019-0273-5
dc.relation/*ref*/A. Starzyńska, B. Stodolak, A. M. Gómez, B. Mickowska, B. Martín y Ł. Byczyński, "Mould starter selection for extended solid-state fermentation of quinoa", LWT, vol. 99, pp. 231-237, 2019. DOI: https://doi.org/10.1016/j.lwt.2018.09.055
dc.relation/*ref*/M. B. O'Keeffe and R. J. Fitzgerald, "Identification of short peptide sequences in complex milk protein hydrolysates", Food Chem., vol. 184, pp. 140-146, 2015. DOI: https://doi.org/10.1016/j.foodchem.2015.03.077
dc.relation/*ref*/R. J. de Castro y H. H. Sato, "A response surface approach on optimization of hydrolysis parameters for the production of egg white protein hydrolysates with antioxidant activities", Biocatal. Agric. Biotechnol., vol. 4, n.° 1, pp. 55-62, 2015. DOI: https://doi.org/10.1016/j.bcab.2014.07.001
dc.relation/*ref*/Y. Hou, W. Liu, Y. Cheng, J. Zhou, L. Wu y G. Yang, "Production optimization and characterization of immunomodulatory peptides obtained from fermented goat placenta", Food Sci. Technol., vol. 34, n.° 4, pp. 723-729, 2015. DOI: https://doi.org/10.1590/1678-457X.6448
dc.relation/*ref*/R. Norris, A. Poyarkov, M. B. O'Keeffe y R. J. Fitzgerald, "Characterisation of the hydrolytic specificity of Aspergillus niger derived prolyl endoproteinase on bovine β-casein and determination of ACE inhibitory activity", Food Chem., vol. 156, pp. 29-36, 2014. DOI: https://doi.org/10.1016/j.foodchem.2014.01.056
dc.relation/*ref*/Y. Wang, F. Li, M. Chen, Z. Li, W. Liu y C. Wang, "Angiotensin I-converting enzyme inhibitory activities of Chinese traditional soy-fermented Douchi and Soypaste. Effects of processing and simulated gastrointestinal digestion", Int. J. Food Prop., vol. 18, n.° 4, pp. 934-944, 2015. DOI: https://doi.org/10.1080/10942912.2014.913180
dc.relation/*ref*/B. Singh and A. Kaur, "Antidiabetic potential of a peptide isolated from an endophytic Aspergillus awamori", J. Appl. Microbiol., vol. 120, n.° 2, pp. 301-311, 2016. DOI: https://doi.org/10.1111/jam.12998
dc.relation/*ref*/"Hypertension" World Health Organization (WHO). https://www.who.int/health-topics/hypertension/#tab=tab_1.
dc.rightsDerechos de autor 2021 Revista Facultad de Ciencias Básicases-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourceRevista Facultad de Ciencias Básicas; Vol. 17 No. 1 (2021); 73-89en-US
dc.sourceRevista Facultad de Ciencias Básicas; Vol. 17 Núm. 1 (2021); 73-89es-ES
dc.source2500-5316
dc.source1900-4699
dc.subjectbiochemical activitiesen-US
dc.subjectAspergillusen-US
dc.subjectmetabolismen-US
dc.subjectpeptidesen-US
dc.subjectactividades bioquímicases-ES
dc.subjectAspergilluses-ES
dc.subjectmetabolismoes-ES
dc.subjectpéptidoses-ES
dc.subjectatividades bioquímicaspt-BR
dc.subjectAspergilluspt-BR
dc.subjectmetabolismopt-BR
dc.subjectpeptídeospt-BR
dc.titleAspergillus Genus: Potential Source of Bioactive Peptidesen-US
dc.titleGénero Aspergillus: fuente potencial de péptidos bioactivoses-ES
dc.titleGênero Aspergillus: fonte potencial de peptídeos bioativospt-BR
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución