Tratamiento de aguas residuales por fotocatálisis heterogénea: una revisión sistemática;
Tratamento de águas residuais por fotocatálise heterogênea: revisão sistemática

dc.creatorCastaño, Laura Isabel
dc.creatorDoria Herrera, Gloria María
dc.creatorGrisales Castañeda, David Santiago
dc.date2021-08-27
dc.date.accessioned2022-12-15T18:17:36Z
dc.date.available2022-12-15T18:17:36Z
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rfcb/article/view/5166
dc.identifier10.18359/rfcb.5166
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5356272
dc.descriptionPharmaceutical wastewater contains compounds that, in low concentrations, affect ecosystems for being endocrine disruptors. Therefore, advanced oxidation processes have been proposed as an ideal treatment strategy. Within these technologies, heterogeneous photocatalysis stands out as a high-efficiency and low-cost technology. This research provides a systematic review on the degradation of wastewater from the pharmaceutical industry and the significant advances concerning its degradation by heterogeneous photocatalysis. We used Thesaurus, keywords, and Boolean search in the selected databases: Dialnet, Science Direct, Scopus, Redalyc, SciELO, ProQuest, and American Chemical Society. We also set inclusion/exclusion criteria based on the PRISMA statement, developed a bibliometric parameter, performed a statistical analysis, and established the bestoperating conditions for technology implementation. In conclusion, heterogeneous photocatalysis is a promising proposal for treating the study matrix.en-US
dc.descriptionLas aguas residuales farmacéuticas contienen compuestos que, en bajas concentraciones, afectan los ecosistemas por ser disruptores endocrinos. Por tanto, se han propuesto procesos de oxidación avanzados como una estrategia de tratamiento ideal. Dentro de estas tecnologías, la fotocatálisis heterogénea se destaca como una tecnología de alta eficiencia y bajo costo. Esta investigación proporciona una revisión sistemática sobre la degradación de las aguas residuales de la industria farmacéutica y los importantes avances en su degradación por fotocatálisis heterogénea. Usamos Tesauro, palabras clave y búsqueda booleana en las bases de datos seleccionadas: Dialnet, Science Direct, Scopus, Redalyc, SciELO, ProQuest y American Chemical Society. También establecimos criterios de inclusión/exclusión basados en la declaración PRISMA, desarrollamos un parámetro bibliométrico, realizamos un análisis estadístico y establecimos las mejores condiciones operacionales para la implementación de la tecnología. En conclusión, la fotocatálisis heterogénea es una propuesta prometedora para el tratamiento de la matriz de estudio.es-ES
dc.descriptionAs águas residuais farmacêuticas contêm compostos que, em baixas concentrações, afetam os ecossistemas por ser disruptoras endócrinas. Portanto, os processos avançados de oxidação vêm sendo propostos como estratégia de tratamento ideal. No âmbito dessas tecnologias, a fotocatálise heterogênea se destaca como uma tecnologia de alta eficiência e baixo custo. Nesta pesquisa, são apresentados uma revisão sistemática sobre a degradação de águas residuais da indústria farmacêutica e os avanços significativos relativos à sua degradação por fotocatálise heterogênea. Foi utilizado um dicionário de sinônimos, palavras-chave e busca booleana nas bases de dados selecionadas (Dialnet, Science Direct, Scopus, Redalyc, SciELO, ProQuest e American Chemical Society). Também foram determinados critérios de inclusão e exclusão com base na declaração Prisma, desenvolvido um parâmetro bibliométrico, realizada análise estatística e estabelecidas as melhores condições de operação para implementar a tecnologia. Em conclusão, a fotocatálise heterogênea é uma proposta promissora para tratar a matriz de estudo.pt-BR
dc.formatapplication/pdf
dc.formattext/xml
dc.languageeng
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rfcb/article/view/5166/4793
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rfcb/article/view/5166/4852
dc.relation/*ref*/D. Henriquez Villa, "Presencia De Contaminantes Emergentes En Aguas Y Su Impacto En El Ecosistema. Estudio De Caso: Productos Farmacéuticos En La Cuenca Del Rio Biobío, Region Del Biobío, Chile Tesis," Universidad de Chile, 2012.
dc.relation/*ref*/F. J. A. Villaluz, M. D. G. de Luna, J. I. Colades, S. Garcia-Segura, and M. C. Lu, "Removal of 4-chlorophenol by visible-light photocatalysis using ammonium iron(II) sulfate-doped nano-titania," Process Saf. Environ. Prot., pp. 121-128, May 2019. https://doi.org/10.1016/j.psep.2019.03.001
dc.relation/*ref*/K. H. H. Aziz, K. M. Omer, A. Mahyar, H. Miessner, S. Mueller, and D. Moeller, "Application of photocatalytic falling film reactor to elucidate the degradation pathways of pharmaceutical diclofenac and ibuprofen in aqueous solutions," Coatings, vol. 9, no. 8, Aug. 2019. https://doi.org/10.3390/coatings9080465
dc.relation/*ref*/R. Kumar, M. A. Barakat, B. A. Al-Mur, F. A. Alseroury, and J. O. Enola, "Photocatalytic degradation of cefoxitin sodium antibiotic using novel BN/CdAl2O4 composite," J. Clean. Prod., p. 119076, Oct. 2019. https://doi.org/10.1016/j.jclepro.2019.119076
dc.relation/*ref*/M. Janet Gil, A. María Soto, J. Iván Usma, and O. Darío Gutiérrez, "Emerging contaminants in waters: effects and possible treatments Contaminantes emergentes em águas, efeitos e possíveis tratamentos," 2012.
dc.relation/*ref*/"Noelia Miranda García TESIS DOCTORAL Marzo 2015," 2015.
dc.relation/*ref*/M. I. Ashraf, M. Ateeb, M. H. Khan, N. Ahmed, Q. Mahmood, and Zahidullah, "Integrated treatment of pharmaceutical effluents by chemical coagulation and ozonation," Sep. Purif. Technol., vol. 158, pp. 383-386, 2016. https://doi.org/10.1016/j.seppur.2015.12.048
dc.relation/*ref*/G. Kooijman, M. K. de Kreuk, C. Houtman, and J. B. van Lier, "Perspectives of coagulation/flocculation for the removal of pharmaceuticals from domestic wastewater: A critical view at experimental procedures," J. Water Process Eng., vol. 34, Apr. 2020. https://doi.org/10.1016/j.jwpe.2020.101161
dc.relation/*ref*/G. Kooijman, M. K. de Kreuk, C. Houtman, and J. B. van Lier, "Perspectives of coagulation/flocculation for the removal of pharmaceuticals from domestic wastewater: A critical view at experimental procedures," J. Water Process Eng., vol. 34, no. May 2019, p. 101161, 2020. https://doi.org/10.1016/j.jwpe.2020.101161
dc.relation/*ref*/M. Cao, P. Wang, Y. Ao, C. Wang, J. Hou, and J. Qian, "Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: Graphene oxide/magnetite/cerium-doped titania," J. Colloid Interface Sci., vol. 467, pp. 129-139, Apr. 2016. https://doi.org/10.1016/j.jcis.2016.01.005
dc.relation/*ref*/S. Kurwadkar, T. V. Hoang, K. Malwade, S. R. Kanel, W. F. Harper, and G. Struckhoff, "Application of carbon nanotubes for removal of emerging contaminants of concern in engineered water and wastewater treatment systems," Nanotechnol. Environ. Eng., vol. 4, no. 1, Dec. 2019. https://doi.org/10.1007/s41204-019-0059-1
dc.relation/*ref*/S. Al Hakim, A. Baalbaki, O. Tantawi, and A. Ghauch, "Chemically and thermally activated persulfate for theophylline degradation and application to pharmaceutical factory effluent," RSC Adv., vol. 9, no. 57, pp. 33472-33485, 2019. https://doi.org/10.1039/C9RA05362J
dc.relation/*ref*/F. Cervantes-Carrillo, J. Pérez, and J. Gómez, "Avances en la eliminación biológica del nitrógeno de las aguas residuales," Rev. Latinoam. Microbiol., vol. 42, no. 2, pp. 73-82, 2000.
dc.relation/*ref*/A. Mirzaei, Z. Chen, F. Haghighat, and L. Yerushalmi, "Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes - A review," Chemosphere, vol. 174, pp. 665-688, 2017. https://doi.org/10.1016/j.chemosphere.2017.02.019
dc.relation/*ref*/J. A. Jaimes Urbina and J. A. Vera Solano, "Los contaminantes emergentes de las aguas residuales de la industria farmacéutica y su tratamiento por medio de la ozonización," Inf. Técnico, vol. 84, no. 2, pp. 90-103, 2020. https://doi.org/10.23850/22565035.2305
dc.relation/*ref*/N. Mondal, A. De, and A. Samanta, "Achieving Near-Unity Photoluminescence Efficiency for Blue-Violet-Emitting Perovskite Nanocrystals," ACS Energy Lett., vol. 4, no. 1, pp. 32-39, 2019. https://doi.org/10.1021/acsenergylett.8b01909
dc.relation/*ref*/R. Arshad et al., "Degradation product distribution of Reactive Red-147 dye treated by UV/H2O2/TiO2 advanced oxidation process," J. Mater. Res. Technol., vol. 9, no. 3, pp. 3168-3178, 2020. https://doi.org/10.1016/j.jmrt.2020.01.062
dc.relation/*ref*/Smýkalová, Sokolová, Foniok, Matějka, and Praus, "Photocatalytic Degradation of Selected Pharmaceuticals Using g-C3N4 and TiO2 Nanomaterials," Nanomaterials, vol. 9, no. 9, p. 1194, Aug. 2019. https://doi.org/10.3390/nano9091194
dc.relation/*ref*/O. Pérez-Anaya, "Índice de Osk: Una nueva medición bibliométrica para las revistas científicas," Rev. Esp. Doc. Cient., vol. 40, no. 2, pp. 1-6, 2017. https://doi.org/10.3989/redc.2017.2.1418
dc.relation/*ref*/B. Hutton, F. Catalá-López, and D. Moher, "La extensión de la declaración PRISMA para revisiones sistemáticas que incorporan metaanálisis en red: PRISMA-NMA," Med. Clin. (Barc)., vol. 147, no. 6, pp. 262-266, 2016. https://doi.org/10.1016/j.medcli.2016.02.025
dc.relation/*ref*/J. A. González, E. Cobo, and M. Villaró, "Tema 15. Revisión sistemática y meta-análisis," Bioestad. para no Estad., pp. 1-42, 2014.
dc.relation/*ref*/Y. Quinchía, J. Pérez, G. Doria, and Y. Sánchez, "Parámetros de calidad de producción de biogá a parti de pulpa de café," Dk, vol. 53, no. 9, pp. 1689-1699, 2015. https://doi.org/10.1017/CBO9781107415324.004
dc.relation/*ref*/D. L. PINEDA OSPINA, "Bibliometric analysis for the identification of factors of innovation in the food industry," AD-minister, no. 27, pp. 95-126, 2015. https://doi.org/10.17230/ad-minister.27.5
dc.relation/*ref*/L. Fernando Garcés Giraldo, E. Alejandro Mejía Franco, and J. Julián Santamaría Arango, "Artículo de Revisión Resumen La fotocatálisis como alternativa para el tratamiento de aguas residuales."
dc.relation/*ref*/R. Liang, S. Luo, F. Jing, L. Shen, N. Qin, and L. Wu, "A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs)," Appl. Catal. B Environ., vol. 176-177, pp. 240-248, Oct. 2015. https://doi.org/10.1016/j.apcatb.2015.04.009
dc.relation/*ref*/A. Pourtaheri and A. Nezamzadeh-Ejhieh, "Photocatalytic properties of incorporated NiO onto clinoptilolite nano-particles in the photodegradation process of aqueous solution of cefixime pharmaceutical capsule," Chem. Eng. Res. Des., vol. 104, pp. 835-843, 2015. https://doi.org/10.1016/j.cherd.2015.10.031
dc.relation/*ref*/E. Mugunthan, M. B. Saidutta, and P. E. Jagadeeshbabu, "Visible light assisted photocatalytic degradation of diclofenac using TiO2-WO3 mixed oxide catalysts," Environ. Nanotechnology, Monit. Manag., vol. 10, pp. 322-330, Dec. 2018. https://doi.org/10.1016/j.enmm.2018.07.012
dc.relation/*ref*/L. Lin et al., "Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO2 nanofibers combined with BN nanosheets: Degradation products and mechanisms," Chemosphere, vol. 220, pp. 921-929, 2019. https://doi.org/10.1016/j.chemosphere.2018.12.184
dc.relation/*ref*/E. Mugunthan, M. B. Saidutta, and P. E. Jagadeeshbabu, "Visible light assisted photocatalytic degradation of diclofenac using TiO2-WO3 mixed oxide catalysts," Environ. Nanotechnology, Monit. Manag., vol. 10, pp. 322-330, 2018. https://doi.org/10.1016/j.enmm.2018.07.012
dc.relation/*ref*/C. Li, R. Hu, X. Lu, S. Bashir, and J. L. Liu, "Efficiency enhancement of photocatalytic degradation of tetracycline using reduced graphene oxide coordinated titania nanoplatelet," Catal. Today, 2019. https://doi.org/10.1016/j.cattod.2019.06.038
dc.relation/*ref*/Y. Zhao et al., "Enhanced photocatalytic activity of Ag-CsPbBr 3 /CN composite for broad spectrum photocatalytic degradation of cephalosporin antibiotics 7-ACA," Appl. Catal. B Environ., pp. 57-69, Jun. 2019. https://doi.org/10.1016/j.apcatb.2019.01.090
dc.relation/*ref*/G. Tafurt-García et al., "Decolorization of Reactive Black 5 Dye by Heterogeneous Photocatalysis with TiO2/UV," Rev. Colomb. Química, vol. 47, no. 2, pp. 36-44, May 2018. https://doi.org/10.15446/rev.colomb.quim.v47n2.67922
dc.relation/*ref*/J. Blanco Gálvez, S. Malato Rodríguez, C. A. Estrada Gasca, E. R. Bandala, S. Gelover, and T. Leal, "3 PURIFICACIÓN DE AGUAS POR FOTOCATÁLISIS HETEROGÉNEA: ESTADO DEL ARTE."
dc.relation/*ref*/J. C. Ahern, R. Fairchild, J. S. Thomas, J. Carr, and H. H. Patterson, "Characterization of BiOX compounds as photocatalysts for the degradation of pharmaceuticals in water," Appl. Catal. B Environ., vol. 179, pp. 229-238, Dec. 2015. https://doi.org/10.1016/j.apcatb.2015.04.025
dc.relation/*ref*/D. Jiang, T. Wang, Q. Xu, D. Li, S. Meng, and M. Chen, "Perovskite oxide ultrathin nanosheets/g-C 3 N 4 2D-2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline," Appl. Catal. B Environ., vol. 201, pp. 617-628, Feb. 2017. https://doi.org/10.1016/j.apcatb.2016.09.001
dc.relation/*ref*/W. Wang, J. Fang, S. Shao, M. Lai, and C. Lu, "Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics," Appl. Catal. B Environ., vol. 217, pp. 57-64, 2017. https://doi.org/10.1016/j.apcatb.2017.05.037
dc.relation/*ref*/L. Wang et al., "FeCl3/NaNO2: An efficient photocatalyst for the degradation of aquatic steroid estrogens under natural light irradiation," Environ. Sci. Technol., vol. 41, no. 10, pp. 3747-3751, May 2007. https://doi.org/10.1021/es0625778
dc.relation/*ref*/L. Zhou et al., "0D/2D plasmonic Cu2-xS/g-C3N4 nanosheets harnessing UV-vis-NIR broad spectrum for photocatalytic degradation of antibiotic pollutant," Appl. Catal. B Environ., p. 118326, Oct. 2019. https://doi.org/10.1016/j.apcatb.2019.118326
dc.relation/*ref*/J. C. Colmenares, E. Kuna, S. Jakubiak, J. Michalski, and K. Kurzydłowski, "Polypropylene nonwoven filter with nanosized ZnO rods: Promising hybrid photocatalyst for water purification," Appl. Catal. B Environ., vol. 170-171, pp. 273-282, Jul. 2015. https://doi.org/10.1016/j.apcatb.2015.01.031
dc.relation/*ref*/D. A. Solís-casados and A. Alcantara-cobos, "Síntesis de catalizadores basados en TiO2 modificado con Sn: Caracterización y evaluación de su desempeño fotocatalítico en la degradación de AINEs presentes en aguas residuales," Superf. y vacío, vol. 29, no. 1, pp. 24-31, 2016.
dc.relation/*ref*/A. Tiwari, A. Shukla, Lalliansanga, D. Tiwari, and S. M. Lee, "Au-nanoparticle/nanopillars TiO2 meso-porous thin films in the degradation of tetracycline using UV-A light," J. Ind. Eng. Chem., vol. 69, pp. 141-152, Jan. 2019. https://doi.org/10.1016/j.jiec.2018.09.027
dc.relation/*ref*/N. Gómez, "Recubrimientos mesoporosos y mesoestructurados de TiO2-anatasa por el método sol-gel para aplicaciones en sistemas fotocatalíticos," Univ. Auton. Madrid, pp. 11-12, 2012.
dc.relation/*ref*/L. Quispe, "NUEVOS OXIDOS DE TITANIO DOPADOS ( Yb , Nd , La y Li ) PARA LA," Rev. Boliv. Química, vol. 1, no. 1, pp. 49-56, 2010.
dc.relation/*ref*/A. M. Abdel-Wahab, A. S. Al-Shirbini, O. Mohamed, and O. Nasr, "Photocatalytic degradation of paracetamol over magnetic flower-like TiO2/Fe2O3core-shell nanostructures," J. Photochem. Photobiol. A Chem., vol. 347, pp. 186-198, Oct. 2017. https://doi.org/10.1016/j.jphotochem.2017.07.030
dc.relation/*ref*/S. Singh, P. Kaur, S. Bansal, and S. Singhal, "Enhanced photocatalytic performance of Ru-doped spinel nanoferrites for treating recalcitrant organic pollutants in wastewater," J. Sol-Gel Sci. Technol., Oct. 2019. https://doi.org/10.1007/s10971-019-05142-9
dc.relation/*ref*/M. J. Muñoz-Batista et al., "Gas phase 2-propanol degradation using titania photocatalysts: Study of the quantum efficiency," Appl. Catal. B Environ., vol. 201, pp. 400-410, Feb. 2017. https://doi.org/10.1016/j.apcatb.2016.08.014
dc.relation/*ref*/J. Wang, Q. Zhang, F. Deng, X. Luo, and D. D. Dionysiou, "Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe2O4/ZnFe2O4 nano-heterojunctions," Chem. Eng. J., vol. 379, p. 122264, Jan. 2020. https://doi.org/10.1016/j.cej.2019.122264
dc.relation/*ref*/H. Azizi-Toupkanloo, M. Karimi-Nazarabad, M. Shakeri, and M. Eftekhari, "Photocatalytic mineralization of hard-degradable morphine by visible light-driven Ag@g-C3N4 nanostructures," Environ. Sci. Pollut. Res., vol. 26, no. 30, pp. 30941-30953, Oct. 2019. https://doi.org/10.1007/s11356-019-06274-9
dc.relation/*ref*/N. D. Khiavi, R. Katal, S. K. Eshkalak, S. Masudy-Panah, S. Ramakrishna, and H. Jiangyong, "Visible light driven heterojunction photocatalyst of cuo-cu2o thin films for photocatalytic degradation of organic pollutants," Nanomaterials, vol. 9, no. 7, 2019. https://doi.org/10.3390/nano9071011
dc.relation/*ref*/Z. Yin et al., "Photodegradation mechanism and genetic toxicity of bezafibrate by Pd/g-C3N4 catalysts under simulated solar light irradiation: The role of active species," Chem. Eng. J., vol. 379, p. 122294, Jan. 2020. https://doi.org/10.1016/j.cej.2019.122294
dc.relation/*ref*/H. Guo et al., "Enhanced catalytic performance of graphene-TiO2 nanocomposites for synergetic degradation of fluoroquinolone antibiotic in pulsed discharge plasma system," Appl. Catal. B Environ., vol. 248, pp. 552-566, Jul. 2019. https://doi.org/10.1016/j.apcatb.2019.01.052
dc.relation/*ref*/N. Sun et al., "Efficiently photocatalytic degradation of monochlorophenol on in-situ fabricated BiPO4/β-Bi2O3 heterojunction microspheres and O2-free hole-induced selective dechloridation conversion with H2 evolution," Appl. Catal. B Environ., p. 118313, Oct. 2019. https://doi.org/10.1016/j.apcatb.2019.118313
dc.relation/*ref*/R. Abazari, A. R. Mahjoub, S. Sanati, Z. Rezvani, Z. Hou, and H. Dai, "Ni-Ti Layered Double Hydroxide@Graphitic Carbon Nitride Nanosheet: A Novel Nanocomposite with High and Ultrafast Sonophotocatalytic Performance for Degradation of Antibiotics," Inorg. Chem., vol. 58, no. 3, pp. 1834-1849, Feb. 2019. https://doi.org/10.1021/acs.inorgchem.8b02575
dc.relation/*ref*/N. D. Banić, B. F. Abramović, J. B. Krstić, D. V. Šojić Merkulov, N. L. Finčur, and M. N. Mitrić, "Novel WO 3 /Fe 3 O 4 magnetic photocatalysts: Preparation, characterization and thiacloprid photodegradation," J. Ind. Eng. Chem., vol. 70, pp. 264-275, Feb. 2019. https://doi.org/10.1016/j.jiec.2018.10.025
dc.relation/*ref*/E. Bilgin Simsek, Z. Balta, and P. Demircivi, "Novel shungite based Bi 2 WO 6 carbocatalyst with high photocatalytic degradation of tetracycline under visible light irradiation," J. Photochem. Photobiol. A Chem., vol. 380, Jul. 2019. https://doi.org/10.1016/j.jphotochem.2019.05.012
dc.relation/*ref*/T. Química, "State of the art in the development of photocatalytic membrane reactors, for the treatment of persistent organic pollutants in water and wastewaters."
dc.relation/*ref*/S. Karuppaiah et al., "Efficient photocatalytic degradation of ciprofloxacin and bisphenol A under visible light using Gd 2 WO 6 loaded ZnO/bentonite nanocomposite," Appl. Surf. Sci., vol. 481, pp. 1109-1119, Jul. 2019. https://doi.org/10.1016/j.apsusc.2019.03.178
dc.relation/*ref*/X. Yuan et al., "Photocatalytic degradation of organic pollutant with polypyrrole nanostructures under UV and visible light," Appl. Catal. B Environ., vol. 242, pp. 284-292, Mar. 2019. https://doi.org/10.1016/j.apcatb.2018.10.002
dc.relation/*ref*/M. Klavarioti, D. Mantzavinos, and D. Kassinos, "Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes," Environ. Int., vol. 35, no. 2, pp. 402-417, 2009. https://doi.org/10.1016/j.envint.2008.07.009
dc.relation/*ref*/V. C. M. Rojas, L. Matejova, A. L. Milla, G. J. F. Cruz, J. L. Solís Veliz, and M. M. Gómez León, "OBTENCIÓN DE PARTÍCULAS DE TiO 2 POR SOL-GEL, ASISTIDO CON ULTRASONIDO PARA APLICACIONES FOTOCATALÍTICAS PRODUCTION OF TiO 2 PARTICLES BY SOL-GEL ULTRASOUND ASSISTED FOR PHOTOCATALYTIC APPLICATIONS," Rev Soc Quím Perú, vol. 81, no. 3, pp. 24-7, 2015. https://doi.org/10.5114/aoms.2011.22071
dc.relation/*ref*/D. C. Napoleão et al., "Use of the photo-Fenton process to discover the degradation of drugs present in water from the Wastewater Treatment Plants of the pharmaceutical industry," 2017.
dc.relation/*ref*/M. Khan, C. S. L. Fung, A. Kumar, J. He, and I. M. C. Lo, "Unravelling mechanistic reasons for differences in performance of different Ti- and Bi-based magnetic photocatalysts in photocatalytic degradation of PPCPs," Sci. Total Environ., vol. 686, pp. 878-887, Oct. 2019. https://doi.org/10.1016/j.scitotenv.2019.05.340
dc.relation/*ref*/X. Zhong, K. X. Zhang, D. Wu, X. Y. Ye, W. Huang, and B. X. Zhou, "Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation," Chem. Eng. J., 2019. https://doi.org/10.1016/j.cej.2019.123148
dc.relation/*ref*/P. Zhang, P. Wu, S. Bao, Z. Wang, B. Tian, and J. Zhang, "Synthesis of sandwich-structured AgBr@Ag@TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes," Chem. Eng. J., vol. 306, pp. 1151-1161, Dec. 2016. https://doi.org/10.1016/j.cej.2016.08.015
dc.relation/*ref*/M. Ahmadi, N. Amiri, M. Pirsaheb, and P. Amiri, "Application of the central composite design for the treatment of soft drink factory wastewater in two-stage aerobic sequencing batch reactors combined with ozonation," Desalin. Water Treat., vol. 57, no. 41, pp. 19077-19086, 2016. https://doi.org/10.1080/19443994.2015.1103305
dc.relation/*ref*/B. Domenjoud, A. Gonzalez Ospina, E. Vulliet, and S. Baig, "Innovative Coupling of Ozone Oxidation and Biodegradation for Micropollutants Removal from Wastewater," Ozone Sci. Eng., vol. 39, no. 5, pp. 296-309, 2017. https://doi.org/10.1080/01919512.2017.1350568
dc.relation/*ref*/E. Salhi and U. Von Gunten, "Simultaneous determination of bromide, bromate and nitrite in low μg l-1 levels by ion chromatography without sample pretreatment," Water Res., vol. 33, no. 15, pp. 3239-3244, 1999. https://doi.org/10.1016/S0043-1354(99)00053-6
dc.relation/*ref*/R. Coy-Herrera, J. Jiménez-Antillón, and V. Montero-Campos, "Evaluación de Subproductos de Cloración y su efecto mutagénico en agua para consumo humano," 2013.
dc.relation/*ref*/R. Roller, G. Bustos, O. Barbazan, M. Grasetti, E. Noli, and R. Grimolizzi, "Calidad Del Agua: Estado De Situación Normativo Y Comparativo Argentina - Unión Europea," Serv. Nac. Sanid. y Calid. Agroaliment. - Argentina, no. 9, pp. 52-64, 2015.
dc.relation/*ref*/E. Bilgin Simsek, "Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation," Appl. Catal. B Environ., vol. 200, pp. 309-322, Jan. 2017. https://doi.org/10.1016/j.apcatb.2016.07.016
dc.rightsDerechos de autor 2021 Revista Facultad de Ciencias Básicases-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourceRevista Facultad de Ciencias Básicas; Vol. 16 No. 2 (2020); 51-64en-US
dc.sourceRevista Facultad de Ciencias Básicas; Vol. 16 Núm. 2 (2020); 51-64es-ES
dc.source2500-5316
dc.source1900-4699
dc.subjectdecompositionen-US
dc.subjectpharmaceutical industryen-US
dc.subjectphotochemistryen-US
dc.subjectreviewen-US
dc.subjectphotocatalysisen-US
dc.subjectdescomposiciónes-ES
dc.subjectindustria farmacéuticaes-ES
dc.subjectfotoquímicaes-ES
dc.subjectrevisiónes-ES
dc.subjectfotocatálisises-ES
dc.subjectdecomposiçãopt-BR
dc.subjectindústria farmacêuticapt-BR
dc.subjectfotoquímicapt-BR
dc.subjectrevisãopt-BR
dc.subjectfotocatálisept-BR
dc.titleWastewater Treatment by Heterogeneous Photocatalysis: A Systematic Reviewen-US
dc.titleTratamiento de aguas residuales por fotocatálisis heterogénea: una revisión sistemáticaes-ES
dc.titleTratamento de águas residuais por fotocatálise heterogênea: revisão sistemáticapt-BR
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución