Amplitud de aceleración del componente vertical de los sismos colombianos

dc.creatorBenjumea, José M.
dc.creatorChio Cho, Gustavo
dc.creatorFernández W., Angélica
dc.creatorArdila, Javier A.
dc.date2022-06-03
dc.date.accessioned2022-12-15T16:06:59Z
dc.date.available2022-12-15T16:06:59Z
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/5817
dc.identifier10.18359/rcin.5817
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5355760
dc.descriptionPast studies have demonstrated that the vertical earthquake component can substantially affect the seismic performance of bridges and buildings. This component is typically ignored or, when included in the design, is estimated as two-thirds of the horizontal seismic design earthquake. This paper presents the characterization of the acceleration amplitude of the vertical component of moderate and strong earthquakes in Colombia (Moment magnitude Mw > 4) that occurred between June 1993 and April 2020. A total of 42 seismic records registered at less than 50 km from the rupture plane and with horizontal acceleration peaks greater than 0.05g were selected. The peak ground acceleration (PGA) of the three components and the ratio between those PGAs were calculated. Additionally, the relationship among those parameters and the magnitude and epicentral and hypocentral distances were determined. The results showed that the V/H ratio equal to 2/3 is not always valid to represent the effects of the vertical component in structures subjected to the moderate and strong ground motions in Colombia.en-US
dc.descriptionEstudios anteriores han demostrado que el componente vertical del terremoto puede afectar sustancialmente el desempeño sísmico de puentes y edificios. Este componente generalmente se ignora o, cuando se incluye en el diseño, se estima como dos tercios del terremoto de diseño sísmico horizontal. Este trabajo presenta la caracterización de la amplitud de aceleración del componente vertical de sismos moderados y fuertes en Colombia (Magnitud de momento Mw > 4) ocurridos entre junio de 1993 y abril de 2020. Se registraron un total de 42 registros sísmicos a menos de 50 km del Se seleccionaron planos de ruptura y con picos de aceleración horizontal mayores a 0.05g. Se calcularon la aceleración máxima del suelo (PGA) de los tres componentes y la relación entre esos PGA. Adicionalmente, se determinó la relación entre dichos parámetros y la magnitud y las distancias epicentral e hipo central. Los resultados mostraron que la relación V/H igual a 2/3 no siempre es válida para representar los efectos del componente vertical en estructuras sometidas a movimientos de suelo moderados y fuertes en Colombia.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.languageeng
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/5817/5114
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/5817/5187
dc.relation/*ref*/J.-S. Jeon, A. Shafieezadeh, D. H. Lee, E. Choi, & R. DesRoches, “Damage assessment of older highway bridges subjected to three-dimensional ground motions: Characterization of shear-axial force interaction on seismic fragilities,” Engineering Structures, vol. 87, pp. 47–57, march, 2015. doi: https://doi.org/10.1016/j.engstruct.2015.01.015 [2] F. Colangelo, “Effect of earthquake statistically correlated vertical component on inelastic demand to regular reinforced-concrete frames,” Engineering Structures, vol. 211, p. 110492, May 2020. doi: https://doi.org/10.1016/j.engstruct.2020.110492 [3] A. Papazoglou & A. Elnashai, “Analytical and Field Evidence of the Damaging Effect of Vertical Earthquake Ground Motion,” Earthquake Engineering & Structural Dynamics, vol. 25, no. 10, pp. 1109–1137, October 1996. doi: https://doi.org/10.1002/(SICI)1096-9845(199610)25:10%3C1109::AID-EQE604%3E3.0.CO;2-0 [4] J. Benjumea, M. Saiidi, & A. Itani, “Experimental and Analytical Seismic Studies of a Two-Span Bridge System with Precast Concrete Elements and ABC Connections,” Center for Civil Engineering Earthquake Research, University of Nevada, Reno. Report No.: CCEER-19-02, Reno, United States, 2019. [5] A. Massumi & F. Gholami, “The influence of seismic intensity parameters on structural damage of RC buildings using principal components analysis,” Applied Mathematical Modelling, vol. 40, no. 3, pp. 2161–2176, February 2016. doi: https://doi.org/10.1016/j.apm.2015.09.043 [6] P. Ma, H. Wang, W. Jiang, & X. Zhang, “Research Status of Relationship between Seismic Instrument Intensity and Ground Motion Parameters,” IOP Conference Series Materials Science and Engineering, vol. 780, no. 022002, pp. 1–8, April 2020. doi: https://doi.org/10.1088/1757-899X/780/2/022002 [7] C. Collier & A. Elnashai, “A Procedure for Combining Vertical and Horizontal Seismic Action Effects,” Journal of Earthquake Engineering, vol. 5, no. 4, pp. 521–539, October 2001. doi: https://doi.org/10.1080/13632460109350404 [8] N. N. Ambraseys & K. A. Simpsom, “Prediction of Vertical Response Spectra in Europe,” Earthquake Engineering & Structural Dynamics, vol. 25, no. 4, pp. 401–412, April 1996. doi: https://doi.org/10.1002/(SICI)1096-9845(199604)25:4%3C401::AID-EQE551%3E3.0.CO;2-B [9] Y. Bozorgnia & K. Campbell, “The Vertical-to-Horizontal Response Spectral Ratio and Tentative Procedures for Developing Simplified V/H and Vertical Design Spectra,” Journal of Earthquake Engineering, vol. 8, no. 2, pp. 175–207, 2004. doi: https://doi.org/10.1080/13632460409350486 [10] S. Kim, C. Holub, & A. Elnashai, “Analytical Assessment of the Effect of Vertical Earthquake Motion on RC Bridge Piers,” Journal of Earthquake Engineering, vol. 137, no. 2, pp. 252–260, February 2011. doi: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000306 [11] AIS, Reglamento Colombiano de Construcción Sismo Resistente NSR-10. Bogotá D.C., Colombia: Asociación Colombiana de Ingeniería Sísmica (AIS), 2010. [12] AIS, Norma Colombiana de Diseño de Puentes - LRFD CCP14. Bogotá D.C., Colombia: Asociación Colombiana de Ingeniería Sísmica, AIS, 2014. [13] N. Newmark, J. Blume, & K. Kapur, “Seismic Design Spectra for Nuclear Power Plants,” Journal of the Power Division, vol. 99, no. 2, pp. 287–303, November 1973. doi: https://doi.org/10.1061/JPWEAM.0000753 [14] Servicio Geológico Colombiano, Visor Sismos. [Online]. Available: https://www.sgc.gov.co/sismos, accessed April 07, 2021. [15] Servicio Geológico Colombiano, Catálogo Aceleraciones. [Online]. Available: http://bdrsnc.sgc.gov.co/paginas1/catalogo/index_rnac.php, accessed January 28, 2021. [16] A. S. Elnashai & L. Di Sarno, Fundamentals of Earthquake Engineering. New Jersey, United States: Wiley, 2008. doi: https://doi.org/10.1002/9780470024867 [17] The MathWorks Inc., “MATLAB (R2020b).” 2020. [18] SEISMOSOFT - Earthquake Engineering Software Solutions, “SeismoSignal.” 2021. [19] S. Kramer, Geotechnical Earthquake Engineering: Pearson New International Edition. United States: Pearson, 2014. [20] M. Fernández and J. Ardila, “Caracterización de la componente vertical de los sismos moderados y fuertes en Colombia,” Undergrad tesis, Escuela de Ingeniería Civil, Universidad Industrial de Santander, Bucaramaga, Colombia, 2020. [21] A. Fernández, Seismic Data Processing "SedPro". [Online]. Available: https://la.mathworks.com/matlabcentral/fileexchange/95893-seismic-data-processing-sedpro, accessed July 14, 2021. [22] K. W. Campbell & Y. Bozorgnia, “NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s,” Earthquake Spectra, vol. 24, no. 1, pp. 139–171, February 2008. doi: https://doi.org/10.1193%2F1.2857546 [23] C. Adam, D. Kampenhuber, L. F. Ibarra, & S. Tsantaki, “Optimal Spectral Acceleration-based Intensity Measure for Seismic Collapse Assessment of P-Delta Vulnerable Frame Structures,” Journal of Earthquake Engineering, vol. 21, no. 7, pp. 1189–1195, October 2017. doi: https://doi.org/10.1080/13632469.2016.1210059 [24] R Core Team, “R: A Language and Environment for Statistical Computing.” Vienna, Austria, 2020. [25] Peterson, B. G. and Carl, P., “PerformanceAnalytics: Econometric Tools for Performance and Risk Analysis,” 2020. Available at: https://cran.r-project.org/package=PerformanceAnalytics. [26] Wickham, H. “ggplot2: Elegant Graphics for Data Analysis,” 2016. Springer-Verlag New York. Available at: https://ggplot2.tidyverse.org. doi: https://doi.org/10.1007/978-3-319-24277-4_9 [27] C. Nayak, “A state-of-the-art review of vertical ground motion (VGM) characteristics, effects and provisions,” Innovative Infrastructure Solutions, vol. 6, no. 2, p. 124, march, 2021. doi: https://doi.org/10.1007/s41062-021-00491-3
dc.rightsDerechos de autor 2022 Ciencia e Ingeniería Neogranadinaes-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourceCiencia e Ingenieria Neogranadina; Vol. 32 No. 1 (2022); 83-97en-US
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 32 Núm. 1 (2022); 83-97es-ES
dc.sourceCiencia e Ingeniería Neogranadina; v. 32 n. 1 (2022); 83-97pt-BR
dc.source1909-7735
dc.source0124-8170
dc.subjectvertical ground motionen-US
dc.subjectV/H ratioen-US
dc.subjectV/H spectral ratioen-US
dc.subjectpeak ground accelerationen-US
dc.subjecthypocentral distanceen-US
dc.subjectcomponente vertical sísmicaes-ES
dc.subjectrelación V/Hes-ES
dc.subjectrelación V/H espectraes-ES
dc.subjectaceleración máxima del terrenoes-ES
dc.subjectdistancia hipocentrales-ES
dc.titleAcceleration Amplitude of the Vertical Component of Colombian Earthquakesen-US
dc.titleAmplitud de aceleración del componente vertical de los sismos colombianoses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución