Un esquema de optimización estocástica multiobjetivo para el problema de la producción química para empresas de caña de azúcar

dc.creatorPerea Valencia, Heiver
dc.creatorEscobar, John Wilmer
dc.creatorOcampo Duque, William
dc.date2022-06-03
dc.date.accessioned2022-12-15T16:06:58Z
dc.date.available2022-12-15T16:06:58Z
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/5811
dc.identifier10.18359/rcin.5811
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5355759
dc.descriptionThis paper presents a multiobjective optimization stochastic scheme for production planning for sugarcane companies under uncertainty. The proposed approach considers three stages. The first stage comprises the mass and energy balances for determining process flows. The second stage considers the formulation of a Multiobjective Deterministic Model (MODM) by considering two objective functions: maximizing the gross margin and minimizing the environmental impact. The MODM is given by different production plans that respond differently to the parameters’ variability under uncertainty. Finally, the last stage considers stochastic elements (i.e., product prices, demands, and costs) within the deterministic scheme to obtain a Multiobjective Stochastic Model (MOSM). A case study’s computational results based on the Colombian sugarcane industry show the proposed scheme’s effectiveness. Results include the investment strategy for optimal production planning with an analysis of the parameters’ uncertainty on the economic performance of the planning production configurations.en-US
dc.descriptionEste artículo presenta un esquema de optimización estocástica multiobjetivo para la planificación de la producción de empresas cañeras bajo incertidumbre. El enfoque propuesto considera tres etapas. La primera etapa comprende los balances de masa y energía para determinar los flujos del proceso. La segunda etapa considera la formulación de un Modelo Determinístico Multiobjetivo (MODM, por sus siglas en inglés) considerando dos funciones objetivo: maximizar el margen bruto y minimizar el impacto ambiental. El MODM está dado por diferentes planes de producción que responden de manera diferente a la variabilidad de los parámetros bajo incertidumbre. Finalmente, la última etapa considera elementos estocásticos (es decir, precios de productos, demandas y costos) dentro del esquema determinista para obtener un Modelo Estocástico Multiobjetivo (MOSM, por sus siglas en inglés). Los resultados computacionales de un estudio de caso con base en la industria de la caña de azúcar colombiana muestran la efectividad del esquema propuesto. Los resultados incluyen la estrategia de inversión para la planificación óptima de la producción con un análisis de la incertidumbre de los parámetros en el rendimiento económico de las configuraciones de producción planificadas.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.languageeng
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/5811/5116
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/5811/5189
dc.relation/*ref*/V. H. Mistry and R. M. Makwana, "Computationally efficient vanishing point detection algorithm based road segmentation in road images," in 2016 IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT), 2016, pp. 103-110. DOI: https://doi.org/10.1109/ICAECCT.2016.7942564
dc.relation/*ref*/J. Caicedo Martínez and B. Bacca-Cortes, "AutoNavi3AT, Seguimiento de una Vía Urbana usando Visión Omnidireccional para la Navegación en Vehículos Autónomos." Dirección Nacional de Derechos de Autor, Ministerio del Interior, Bogotá, Colombia, p. 1, 2019.
dc.relation/*ref*/P. Moghadam and J. F. Dong, "Road direction detection based on vanishing-point tracking," in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 1553-1560. DOI: https://doi.org/10.1109/IROS.2012.6386089
dc.relation/*ref*/K. Sabu and M. H. Nerkar, "Vanishing Point Estimation for On-Road Navigation," Int. J. Emerg. Technol. Adv. Eng., vol. 5, no. 4, pp. 73-77, 2015.
dc.relation/*ref*/J. Wang, S. Sun, and X. Zhao, "Unstructured road detection and path tracking for tracked mobile robot," in 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2015, pp. 535-539. DOI: https://doi.org/10.1109/CYBER.2015.7287996
dc.relation/*ref*/K. Lu, J. Li, X. An, and H. He, "Vision Sensor-Based Road Detection for Field Robot Navigation," Sensors, vol. 15, no. 11, pp. 29594-29617, Nov. 2015. DOI: https://doi.org/10.3390/s151129594
dc.relation/*ref*/X. Guo, Q. Li, and C. Sun, "A new road tracking method based on heading direction detection," Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 233, no. 2, pp. 232-248, Feb. 2019. DOI: https://doi.org/10.1177/0954407017740791
dc.relation/*ref*/S. Kumaar, S. Mannar, N. B, P. R. S, and O. S. N, "High Speed Autonomous Navigation of Unmanned Aerial Vehicles using novel Road Identification, Following & Tracking (RIFT) Algorithm*," in 2019 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 2019, pp. 1-6. DOI: https://doi.org/10.1109/DISCOVER47552.2019.9007990
dc.relation/*ref*/R. Miyamoto et al., "Vision-Based Road-Following Using Results of Semantic Segmentation for Autonomous Navigation," in 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), 2019, pp. 174-179. DOI: https://doi.org/10.1109/ICCE-Berlin47944.2019.8966198
dc.relation/*ref*/J.-C. Bazin and M. Pollefeys, "3-line RANSAC for orthogonal vanishing point detection," in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 4282-4287. DOI: https://doi.org/10.1109/IROS.2012.6385802
dc.relation/*ref*/R. Munguía, C. López-Franco, E. Nuño, and A. López-Franco, "Method for SLAM Based on Omnidirectional Vision: A Delayed-EKF Approach," J. Sensors, vol. 2017, pp. 1-14, 2017. DOI: https://doi.org/10.1155/2017/7342931
dc.relation/*ref*/D. C. Hernandez, Van-Dung Hoang, A. Filonenko, and Kang-Hyun Jo, "Vision-based heading angle estimation for an autonomous mobile robots navigation," in 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 2014, pp. 1967-1972. DOI: https://doi.org/10.1109/ISIE.2014.6864917
dc.relation/*ref*/Z. Shang and Z. Shen, "Vision-model-based Real-time Localization of Unmanned Aerial Vehicle for Autonomous Structure Inspection under GPS-denied Environment," Apr. 2019. DOI: https://doi.org/10.1061/9780784482445.037
dc.relation/*ref*/K.-W. Kim, J.-H. Im, M.-B. Heo, and G.-I. Jee, "Precise Vehicle Position and Heading Estimation Using a Binary Road Marking Map," J. Sensors, vol. 2019, pp. 1-18, Jan. 2019. DOI: https://doi.org/10.1155/2019/1296175
dc.relation/*ref*/Wenhao Xu, Yan Zhuang, Huosheng Hu, and Yiwen Zhao, "Real-time road detection and description for robot navigation in an unstructured campus environment," in Proceeding of the 11th World Congress on Intelligent Control and Automation, 2014, pp. 928-933. DOI: https://doi.org/10.1109/WCICA.2014.7052840
dc.relation/*ref*/V. Grassi Junior and J. Okamoto Junior, "Development of an omnidirectional vision system," J. Brazilian Soc. Mech. Sci. Eng., vol. 28, no. 1, pp. 58-68, Mar. 2006. DOI: https://doi.org/10.1590/S1678-58782006000100007
dc.relation/*ref*/F. Deng, X. Zhu, and C. He, "Vision-Based Real-Time Traversable Region Detection for Mobile Robot in the Outdoors," Sensors, vol. 17, no. 9, p. 2101, Sep. 2017. DOI: https://doi.org/10.3390/s17092101
dc.relation/*ref*/M. Montemerlo, S. Thrun, and W. Whittaker, "Conditional particle filters for simultaneous mobile robot localization and people-tracking," Proc. 2002 IEEE Int. Conf. Robot. Autom. (Cat. No.02CH37292), vol. 1, pp. 695-701.
dc.relation/*ref*/O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots," Int. J. Rob. Res., vol. 5, no. 1, pp. 90-98, 1986. DOI: https://doi.org/10.1177/027836498600500106
dc.relation/*ref*/C. Mei and P. Rives, "Single View Point Omnidirectional Camera Calibration from Planar Grids," 2004.
dc.rightsDerechos de autor 2022 Ciencia e Ingeniería Neogranadinaes-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourceCiencia e Ingenieria Neogranadina; Vol. 32 No. 1 (2022); 115-136en-US
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 32 Núm. 1 (2022); 115-136es-ES
dc.sourceCiencia e Ingeniería Neogranadina; v. 32 n. 1 (2022); 115-136pt-BR
dc.source1909-7735
dc.source0124-8170
dc.subjectMultiobjective optimizationen-US
dc.subjectstochastic modelingen-US
dc.subjectbioethanolen-US
dc.subjectbioplasticen-US
dc.subjectbioenergyen-US
dc.subjectbiomassen-US
dc.subjectenvironmental impactsen-US
dc.subjectoptimización multiobjetivoes-ES
dc.subjectmodelado estocásticoes-ES
dc.subjectbioetanoles-ES
dc.subjectbioplásticoes-ES
dc.subjectbioenergíaes-ES
dc.subjectbiomasaes-ES
dc.subjectimpactos ambientaleses-ES
dc.titleA Multiobjective Stochastic Optimization Scheme for the Problem of Chemical Production for Sugarcane Companiesen-US
dc.titleUn esquema de optimización estocástica multiobjetivo para el problema de la producción química para empresas de caña de azúcares-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución