Hidrólisis del bagazo de remolacha roja y modelado de hidrolizados para la producción de bioetanol

dc.creatorJiménez-Islas, Donaji
dc.creatorRivera-Ríos, Juan Manuel
dc.creatorVenegas Sánchez, Josué Addiel
dc.creatorGracida Rodríguez, Jorge Noel
dc.date2021-12-31
dc.date.accessioned2022-12-15T16:06:56Z
dc.date.available2022-12-15T16:06:56Z
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/5699
dc.identifier10.18359/rcin.5699
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5355755
dc.descriptionRed beets in Mexico are used in the colorants industry, but their juice bagasse (RBB) can be carbohydrates for ethanol production. The present study aims to the pretreatment of bagasse of red beet using acid (H2SO4) and alkali (NaOH) to improve the availability of sugars. Also, describe quantitatively in the hydrolysates the microbial growth, substrate consumption, and ethanol production with simulation using data kinetics of red beet and logistic, Pirt, and Luedeking-Piret equations. Experiments with H2SO4 at sterilization conditions resulted in lower phenolic formation and increased hydrolysis to 32 %. Logistic, Pirt, and Luedeking-Piret equations were used to quantitatively describe the hydrolysates the microbial growth, substrate consumption, and ethanol production, respectively. In the alkali treatment, a significant mean difference was found (p < 0.05) in substrate mass and reaction time. The maximum yield of 38 g/L of total sugars at 72 h of reaction was obtained from 6 g RBB and H2SO4 at 0.5 N. The ethanol yield was 15 to 18 g/L representing about 78 to 92 % of the theoretical yield.en-US
dc.descriptionla remolacha roja en México se utiliza en la industria de los colorantes, pero el jugo de su bagazo (BRR) puede ser un carbohidrato para la producción de etanol. El presente estudio tiene como objetivo el pretratamiento del BRR con ácido (H2SO4) y álcali (NaOH) para mejorar la disponibilidad de azúcares. Además, se describe de forma cuantitativa en los hidrolizados el crecimiento microbiano, el consumo de sustrato y la producción de etanol con simulación mediante la cinética de datos de la remolacha roja y las ecuaciones logística, de Pirt y de Luedeking-Piret. Los experimentos con H2SO4 en condiciones de esterilización dieron como resultado una menor formación de fenoles y un aumento de la hidrólisis al 32 %. Se utilizaron las ecuaciones mencionadas para describir cuantitativamente los hidrolizados, el crecimiento microbiano, el consumo de sustrato y la producción de etanol, respectivamente. En el tratamiento con álcali, se encontró una diferencia media significativa (p < 0.05) en la masa del sustrato y el tiempo de reacción. El rendimiento máximo de 38 g/L de azúcares totales a las 72 h de reacción se obtuvo a partir de 6 g de BRR y H2SO4 a 0,5 N. El rendimiento de etanol fue de 15 g/L a 18 g/L, lo que representa aproximadamente del 78 % al 92 % del rendimiento teórico.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.languageeng
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/5699/4990
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/5699/5062
dc.relation/*ref*/K. Baz, J. Cheng, D. Xu, K. Abbas, I. Ali, H. Ali, and C. Fang, "Asymmetric impact of fossil fuel, and renewable energy consumption on economic growth: A nonlinear technique," Energy, vol. 226, p. 120357, Jul. 2021, doi: https://doi.org/10.1016/j.energy.2021.120357
dc.relation/*ref*/M. Ebadian, S. van Dyk, J. D. McMillan, and J. Saddler, "Biofuels policies that have encouraged their production, and use: An international perspective," Energy Policy, vol. 147, p. 111906, Dec. 2020, doi: https://doi.org/10.1016/j.enpol.2020.111906
dc.relation/*ref*/Z. Liu, H. Moradi, S. Shi, and F. Darvishi, "Yeasts as microbial cell factories for sustainable production of biofuels," Renew. Sust. Energ. Rev., vol. 143, p. 110907, Jun. 2021, doi: https://doi.org/10.1016/j.rser.2021.110907
dc.relation/*ref*/M. R. Barr, R. Volpe, and R. Kandiyoti, "Liquid biofuels from food crops in transportation - A balance sheet of outcomes," Chem. Eng. Sci., vol. 10, p. 100090, May 2021, doi: https://doi.org/10.1016/j.cesx.2021.100090
dc.relation/*ref*/H. Yuan, L. Tan, K. Kida, S. Morimura, Z.-Y. Sun, and Y.-Q. Tang, "Potential for reduced water consumption in biorefining of lignocellulosic biomass to bioethanol, and biogas," J. Biosci. Bioeng., Jan. 2021, doi: https://doi.org/10.1016/j.jbiosc.2020.12.015
dc.relation/*ref*/P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, "Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis, and biofuel production," Ind. Eng. Chem. Res., vol. 48, no. 8, pp. 3713-3729, Apr. 2009, doi: https://doi.org/10.1021/ie801542g
dc.relation/*ref*/H. K. Sreenath, R. G. Koegel, A. B. Moldes, T. W. Jeffries, and R. J. Straub, "Ethanol production from alfalfa fiber fractions by saccharification, and fermentation," Process Biochem., vol. 36, no. 12, pp. 1199-1204, Jun. 2001, doi: https://doi.org/10.1016/S0032-9592(01)00162-5
dc.relation/*ref*/F. Pereira Marques, A. K. Lima Soares, D. Lomonaco, L. M. Alexandre e Silva, S. Tédde Santaella, M. de Freitas Rosa, and R. Carrhá Leitão, "Steam explosion pretreatment improves acetic acid organosolv delignification of oil palm mesocarp fibers, and sugarcane bagasse," Int. J. Biol. Macromol., vol. 175, pp. 304-312, Apr. 2021, doi: https://doi.org/10.1016/j.ijbiomac.2021.01.174
dc.relation/*ref*/S. Paramasivan, S. Sankar, R. Senthil Velavan, T. Krishnakumar, R. S. I. Batcha, and K. S. Muthuvelu, "Assessing the potential of lignocellulosic energy crops as an alternative resource for bioethanol production using ultrasound assisted dilute acid pretreatment," Mater. Today: Proc., Feb. 2021, doi: https://doi.org/10.1016/j.matpr.2020.12.470
dc.relation/*ref*/A. Bartos, J. Anggono, Á. E. Farkas, D. Kun, F. E. Soetaredjo, J. Móczó, Antoni, H. Purwaningsih, and B. Pukánszky, "Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties," Polym. Test., vol. 88, p. 106549, Aug. 2020, doi: https://doi.org/10.1016/j.polymertesting.2020.106549
dc.relation/*ref*/Y. Sheng, S. S. Lam, Y. Wu, S. Ge, J. Wu, L. Cai, Z. Huang, Q. V. Le, C. Sonne, and C. Xia, "Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin," Bioresour. Technol., vol. 324, p. 124631, Mar. 2021, doi: https://doi.org/10.1016/j.biortech.2020.124631
dc.relation/*ref*/H. Şenol, Ü. Açıkel, S. Demir, and V. Oda, "Anaerobic digestion of cattle manure, corn silage, and sugar beet pulp mixtures after thermal pretreatment, and kinetic modeling study," Fuel, vol. 263, p. 116651, Mar. 2020, doi: https://doi.org/10.1016/j.fuel.2019.116651
dc.relation/*ref*/H. Günan Yücel, and Z. Aksu, "Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: Use of new detoxification methods," Fuel, vol. 158, pp. 793-799, Oct. 2015, doi: https://doi.org/10.1016/j.fuel.2015.06.016
dc.relation/*ref*/B. Foster, B. Dale, and J. Doran-Peterson, J. "Enzymatic hydrolysis of sugar beet pulp," Appl. Biochem. Biotechnol., 2001, vol. 91-93, pp. 1-9, doi: https://doi.org/10.1385/ABAB:91-93:1-9:269
dc.relation/*ref*/W. Gibbons, and C. Westby, "Effects of inoculum size on solid-phase fermentation of fodder beets for fuel ethanol production," Appl. Environ. Microbiol., vol. 52, pp 960-962. Oct. 1986. doi: https://doi.org/10.1128/aem.52.4.960-962.1986
dc.relation/*ref*/Y. Zheng, C. Lee, C. Yu, Y.-S. Cheng, R. Zhang, B. M. Jenkins, and J. S. VanderGheynst, "Dilute acid pretreatment, and fermentation of sugar beet pulp to ethanol," Appl. Energy, vol. 105, pp. 1-7, May 2013, doi: https://doi.org/10.1016/j.apenergy.2012.11.070
dc.relation/*ref*/R. Chamy, A. Illanes, G. Aroca, and L. Nuñez, "Acid hydrolysis of sugar beet pulp as pretreatment for fermentation," Bioresour. Technol., vol. 50, no. 2, pp. 149-152, Jan. 1994, doi: https://doi.org/10.1016/0960-8524(94)90067-1
dc.relation/*ref*/R. Mitra and D. Duta, "Growth profiling, kinetics, and substrate utilization of low-cost dairy waste for production of β-cryptoxanthin by Kocuriamarina DAGII," Royal Soc. Open Sci., vol. 5, pp 1-19, 2018, doi: https://doi.org/10.1098/rsos.172318
dc.relation/*ref*/N. Phukoetphim, A. Salakkam, P. Laopaiboon, and L. Laopaiboon, "Kinetic models for batch ethanol production from sweet sorghum juice under normal, and high gravity fermentations: Logistic, and modified Gompertz models," J. Biotechnol., vol. 243, pp. 69-75, Feb. 2017, doi: https://doi.org/10.1016/j.jbiotec.2016.12.012
dc.relation/*ref*/O. Soto-Cruz, E. Favela-Torres, and G. Saucedo-Castaneda, "Modeling of Growth, Lactate Consumption, and Volatile Fatty Acid Production by Megasphaera elsdenii Cultivated in Minimal, and Complex Media," Biotechnol. Prog., vol. 18, no. 2, pp. 193-200, Apr. 2002, doi: https://doi.org/10.1021/bp010189y
dc.relation/*ref*/M. Germec, I. Turhan, M. Karhan, and A. Demirci, "Kinetic modeling, and techno-economic feasibility of ethanol production from carob extract based medium in biofilm reactor," Appl. Sci., vol. 9, no. 10, p. 2121, May 2019, doi: https://doi.org/10.3390/app9102121
dc.relation/*ref*/F. Hanaa, "Assessment of freeze-dried hydrodistilled extracts from clove; caraway, and coriander herbs as natural preservatives for butter oil," Int. J. Dairy Sci., vol 4, pp. 67-73, 2009, doi: https://doi.org/10.3923/ijds.2009.67.73
dc.relation/*ref*/D. Jiménez, J. Páez, O. Soto, and J. Gracida, "Modelling of ethanol production from red beet juice by Saccharomyces cerevisiae under thermal, and acid stress conditions," Food Technol. Biotechnol., vol 52, pp. 93-100.
dc.relation/*ref*/H. F. M. Ali, "Assessment of Freeze-Dried Hydrodistilled Extracts from Clove; Caraway, and Coriander Herbs as Natural Preservatives for Butter Oil," Int. J. Dairy Sci., vol. 4, no. 2, pp. 67-73, Mar. 2009, doi: https://doi.org/10.3923/ijds.2009.67.73
dc.relation/*ref*/P. Harel, G. de La Quérière, L. Mignot, and G.-A. Junter, "Mechanical properties of sugar beet Ca-pectate gel usable for cell immobilisation, and heavy metal accumulation," Ind. Crops Prod., vol. 11, no. 2-3, pp. 259-264, Mar. 2000, doi: https://doi.org/10.1016/S0926-6690(99)00054-0
dc.relation/*ref*/A. T. W. M. Hendriks, and G. Zeeman, "Pretreatments to enhance the digestibility of lignocellulosic biomass," Bioresour. Technol., vol. 100, no. 1, pp. 10-18, Jan. 2009, doi: https://doi.org/10.1016/j.biortech.2008.05.027
dc.relation/*ref*/M. Galbe and G. Zacchi, "Pretreatment of lignocellulosic materials for efficient bioethanol production," Adv. Biochem. Eng./Biotechnol., pp. 41-65, 2007, doi: https://doi.org/10.1007/10_2007_070
dc.relation/*ref*/I. E. J. Milder, I. C. W. Arts, B. van de Putte, D. P. Venema, and P. C. H. Hollman, "Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol, and matairesinol," Br. J. Nutr., vol. 93, no. 3, pp. 393-402, Mar. 2005, doi: https://doi.org/10.1079/BJN20051371
dc.relation/*ref*/K. C. Nlewem and M. E. Thrash Jr., "Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass," Bioresour. Technol., vol. 101, no. 14, pp. 5426-5430, Jul. 2010, doi: https://doi.org/10.1016/j.biortech.2010.02.031
dc.relation/*ref*/S. Pattra, S. Sangyoka, M. Boonmee, and A. Reungsang, "Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum," Int. J. Hydrog. Energy, vol. 33, no. 19, pp. 5256-5265, Oct. 2008, doi: https://doi.org/10.1016/j.ijhydene.2008.05.008
dc.relation/*ref*/C. Diaz, Y. Sierra, and J. Hernández, "Determination of the percentage of ethanol produced by Saccharomyces cerevisiae from semi-purified glycerin," J. Phys. Conf. Ser., 1126, 2008. doi: https://doi.org/10.1088/1742-6596/1126/1/012008
dc.rightsDerechos de autor 2022 Ciencia e Ingeniería Neogranadinaes-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourceCiencia e Ingenieria Neogranadina; Vol. 31 No. 2 (2021); 135-148en-US
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 31 Núm. 2 (2021); 135-148es-ES
dc.sourceCiencia e Ingeniería Neogranadina; v. 31 n. 2 (2021); 135-148pt-BR
dc.source1909-7735
dc.source0124-8170
dc.subjectBeta vulgaris Len-US
dc.subjectpretreatmenten-US
dc.subjectPirten-US
dc.subjectlogisticen-US
dc.subjectLuedeking-Pireten-US
dc.subjectBeta vulgaris Les-ES
dc.subjectpretratamientoes-ES
dc.subjectPirtes-ES
dc.subjectlogísticaes-ES
dc.subjectLuedeking-Piretes-ES
dc.titleHydrolysis of Red Beet Bagasse and Modeling of Hydrolysates for Bioethanol Productionen-US
dc.titleHidrólisis del bagazo de remolacha roja y modelado de hidrolizados para la producción de bioetanoles-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución