Simulation of physical habitat in Ayuquila-Armeria river in the west of Mexico

dc.creatorMeza Rodríguez, Demetrio
dc.creatorMartinez Rivera, Luis Manuel
dc.creatorOlguín López, José Luis
dc.creatorAguirre García, Ángel
dc.date2019-06-20
dc.date.accessioned2022-12-15T16:04:29Z
dc.date.available2022-12-15T16:04:29Z
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/3128
dc.identifier10.18359/rcin.3128
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5355696
dc.descriptionIn Mexico, until 2012 was published a norm for the determination of the ecological flow in rivers and streams, which have been severely degraded by water diversion for agricultural and industrial activities. This standard considers the simulation of the physical habitat as a measure for the determination of the flow within the Instream Flow Incremental Methodology (IFIM). In this study, simulations of physical habitat were generated, combined with fish fitness curves. To generate the habitat simulations, a section of river with 706 meters was selected, where the parameters of depth, speed and type of substrate were measured. The iRIC 1.5 software was used to calibrate and simulate the flows with the physical habitat, where the main information input was a topographic survey of the river, and the construction of the suitability curves for the selected fish species. As a result, simulations were obtained at different flow rates and different Weighted Usable Area (WUA) for each of the species of interest. The results showed us that when the flow falls at lower flow rates lower than 1 (m3 s-1) and higher than 200 (m3 s-1), it shows a very poor WUA decay for the four species. Few studies in Latin America have been developed for this type of analysis, so this study contributes significantly as a methodological process that will help improve the research of environmental flow in rivers.  en-US
dc.descriptionEn México, en 2012, se publicó una norma para la determinación del caudal ecológico en los ríos y arroyos que han sido severamente degradados por el desvió de agua de estos para actividades productivas, principalmente agropecuarias e industriales. Esta norma considera la simulación del hábitat físico como una medida para la determinación del caudal dentro del Instream Flow Incremental Methodology (IFIM). En este estudio, fueron generadas las simulaciones de hábitat físico, combinadas con las curvas de idoneidad de peces. Para generar las simulaciones de hábitat, se seleccionó un tramo de río de 706 metros, donde se midieron los parámetros de profundidad, velocidad y tipo de sustrato. Se usó el software iRIC 1.5 para calibrar y simular los caudales con el hábitat físico, donde la principal entrada de información fue un levantamiento topográfico del río y la construcción de las curvas de idoneidad de las especies de peces seleccionadas. Como resultado se obtuvieron simulaciones a diferente caudal y diferente hábitat potencial útil (HPU) para cada una de las especies de interés. Los resultados mostraron que cuando cae el caudal a caudales inferiores a 1 (m3 s-1) y superiores a los 200 (m3s-1), hay decaimiento del HPU, muy pobre para las cuatro especies. Pocos estudios en Latinoamérica se han desarrollado para este tipo de análisis, por lo que esta investigación contribuye a proceso metodológico que ayudará a mejorar la investigación de caudal ambiental en ríos.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.languagespa
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/3128/3597
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/3128/3728
dc.relation/*ref*/Diplas, P., Lynn, D y Neary, V. (2000). Environmental hydraulics technical committee within EWRI. Journal of Hydraulic Engineering, 126(5): 320–321. DOI: https://doi.org/10.1061/(ASCE)0733-9429(2000)126:5(320) [2] Janauer, G.A. (2000). Ecohydrology: Fusing concepts and scales. Ecological Engineering, 16: 9–16. DOI: https://doi.org/10.1016/S0925-8574(00)00072-0 [3] Bovee, K.D. (1982). A guide to stream habitat analysis using the instream flow incremental methodology. Instream Flow Information Paper No. 12. Washington, DC: U.S. Fish and Wildlife Service (FWS/ OBS-82 /26). 273 pp. [4] Bovee, K.D. (1986). Development and evaluation of habitat suitability criteria for use in the in-stream flow incremental methodology. Instream Flow Information Paper No. 21. Washington, DC: U.S. Fish and Wildlife Service, Biological Report 86(7). 263 pp. [5] Pasternack, G.B. (2011). 2D Modeling and ecohydraulic analysis. Land, Air, and Water Resources. University of California at Davis. CreateSpace Independent Publishing Platform. 158 pp. [6] Newson, M. D y Newson, C.L. (2000). Geomorphology, ecology and river channel habitat: Mesoscale approaches to basin-scale challenges. Progress in Physical Geography 24(2): 195–217. DOI: https://doi.org/10.1177/030913330002400203 [6] Sandoval-Solis, S., Mckinney, D.C. y Loucks, D.P. (2010). Sustability index for wáter resource planning and managament. Journal of Water Resource Planning. 137(5): 381-390. DOI: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000134 [7] Nestler, J. M., Goodwin, R. A., Smith, D. L. and Anderson, J. J. (2008) A Mathematical and Conceptual Framework for Ecohydraulics, 205–224. In Hydroecology and Ecohydrology: Past, Present and Future (eds P. J. Wood, D. M. Hannah and J. P. Sadler), John Wiley & Sons, Ltd, Chichester, UK. DOI: https://doi.org/10.1002/9780470010198.ch12 [8] Diez, H.J.M y Burbano, B.L. (2007). Revisión de los modelos eco-hidráulicos uni-dimensionales (1D) y bidimensionales (2d) en corrientes fluviales. Avances en Recursos Hidráulicos, (15): 75-88. [9] Rice, S., Little, S. Wood, P. Moir, H. y Vericat, D. (2010). The relative contributions of ecology and hydraulics to ecohydraulics. River Research and Applications, 26: 363–366. DOI:10.1002/rra.1369 [10] Nestler, J.M, Stewardson, M.J. Gilvear, D.J. Webb, A.J. y Smith, D.L. (2016). Ecohydraulics exemplifies the emerging “paradigm of the interdisciplines”, Journal of Ecohydraulics, 1:1-2, 5-15, DOI: 10.1080/24705357.2016.1229142 [11] Tharme, R. E. (2003). A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications, 19: 397–441. DOI:10.1002/rra.736 [12] Maddock, I., Harby, A. Kemp, P. y Wood, P. (2013b). Ecohydraulics: an introduction. 1-6. In: Maddock, I., Harby, A. Kemp, P. y Wood, P. (ed.). Ecohydraulics: An integrated approach. John Wiley & Sons, Ltd, Chichester, UK. DOI: 10.1002/9781118526576.ch1 [13] Milhous, R.T., Wegner, D.L. y Waddle, T. (1981). User's guide to the physical habitat simulation system. Washington, DC: U.S. Fish and Wildlife Service (FWS /OBS-81 /43), 319 pp. [14] Gard, M. (2009). Comparison of spawning habitat predictions of PHABSIM and River2D models. International Journal of River Basin Management, 7:1, 55-71, DOI: 10.1080/15715124.2009.9635370 [15] Lee, J.H., Kil, J.T. y Jeong, S. (2010). Evaluation of physical fish habitat quality enhancement designs in urban streams using a 2D hydrodynamic model. Ecological Engineering, 36(10): 1251–1259. DOI: https://doi.org/10.1016/j.ecoleng.2010.05.004 [16] Ayllón, D., Almodóvar, A., Nicola, G.G., Parra, I. y Elvira, B. (2012). A new biological indicator to assess the ecological status of Mediterranean trout type streams. Ecological Indicators, 20: 295-303. DOI: https://doi.org/10.1016/j.ecolind.2012.02.028 [17] Steffler, P. y Blackburn, J. (2002). Two-dimensional depth averaged model of river hydrodynamics and fish habitat. Introduction to Depth Averaged Modeling and User's Manual. University of Alberta, 197 pp. [18] Dongkyun, I., Hyeongsik, K., Kyu-Ho, K y Sung-Uk, C. (2011). Changes of river morphology and physical fish habitat following weir removal. Ecological Engineering, 37(6): 883-892. DOI: https://doi.org/10.1016/j.ecoleng.2011.01.005 [19] Boavida, I., Santos, J.M. Katopodis, C. Ferreira, M.T. y Pinheiro, A. (2013). Uncertainty in predicting the fish-response to two-dimensional habitat modeling using field-data. River Research and Applications, 29: 1164-1174. DOI:10.1002/rra.2603 [20] Parasiewicz, P., Rogers, J.N. Vezza, P. Gortázar, J. Seager, T. Pegg, M. Wiśniewolski, W. y Comoglio, C. (2013). Applications of the MesoHABSIM Simulation Model. 109-124. In: Maddock, I., Harby, A. Kemp, P. y Wood, P. (ed.). Ecohydraulics An Integrated Approach. DOI: https://doi.org/10.1002/9781118526576.ch6 [21] Holmquist, J.G y Waddle, T.J. (2013). Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation. Ecological Indicators, London, 28: 115-124. DOI: https://doi.org/10.1016/j.ecolind.2012.03.005 [22] Bovee, K.D., Lamb, B.L. Bartholow, J.M. Stalnaker, C.B. Taylor, J. y Enriksen, J. (1998). Stream habitat analysis using the instream flow incremental methodology. Fort Collins CO, U.S. Geological Survey. Biological Resources Division Information and Technology Report USGS/BRD, VIII, 131 pp. [23] Chang-Lae, J y Shimizu, Y. (2005). Numerical simulation of relatively wide, shallow channels with erodible banks, Journal of Hydraulic Engineering, 131(7): 565-575. DOI: https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(565) [24] Oliveira, I.E., Da Silva, D.D. Guedes, H.A.S. Dergam, J.A. y Ribeiro, C.B.D. (2016). One- and two-dimensional ecohydraulic modeling of formoso river (MG). Engenharia Agrícola, 36(6), 1050-1062. DOI: https://dx.doi.org/10.1590/1809-4430-eng.agric.v36n6p1050-1062/2016 [25] DOF. (2012). Diario Oficial de la Federación. Norma Mexicana NMX-AA-159-SCFI. Que establece el procedimiento para la determinación del caudal ecológico en cuencas hidrológicas. Diario Oficial de la Federación. México, D.F, 123 pp. [26] Meza-Rodríguez, D., Martínez-Rivera, L.M., Mercado-Silva, N., García de Jalón-Lastra, D., González del Tánago-Del Rio, M., Marchamalo-Sacristán, M y De la Mora-Orozco, C. (2017). Propuesta de caudal ecológico en la cuenca del Río Ayuquila-Armería en el Occidente de México. Latin american journal of aquatic research, 45(5), 1017-1030. DOI: https://dx.doi.org/10.3856/vol45-issue5-fulltext-17 [27] Martínez, R.L.M., Carranza, A. y Micaela, G. (2000a). Aquatic ecosystem pollution of the Ayuquila River, Sierra de Manantlán Biosphere Reserve, Mexico. 165–181. In: Munawar, M., Lawrence, S.G. Munawar, I.F. y Malley, D.F. (ed.). Aquatic Ecosystems of Mexico: Status and Scope, Ecovision World Monograph Series, Backhuys, Leiden, The Netherlands. [28] Lyons, J y Navarro-Pérez, S. (1990). Fishes of the Sierra de Manantlán, West-Central Mexico. The Southwestern Naturalist, 35: pp. 32-46. [29] Santana, E., Navarro, S. Martínez, L.M. Aguirre, A. Figueroa, P. y Aguilar, C. (1993). Contaminación, aprovechamiento y conservación de los recursos acuáticos del Río Ayuquila, Reserva de la Biosfera Sierra de Manantlán, Jalisco-Colima. Tiempos de Ciencia. 30: pp. 29-38. [30] Meza-Rodríguez, D., Martínez-Rivera, L.M., Mercado-Silva, N., García de Jalón-Lastra, D., González del Tánago-Del Rio, M., Marchamalo-Sacristán, M y De la Mora-Orozco, C. (2017). Régimen natural de caudales del río Ayuquila-Armería en el occidente de México. Terra Latinoamericana, 35(3), 203-217. DOI: https://dx.doi.org/10.28940/terra.v35i3.224 [31] Wolman, M.G. (1954). A method of sampling coarse river-bed material. Transactions American Geophysical Union. 35(6): 951-956. DOI: https://doi.org/10.1029/TR035i006p00951 [32] Chow, V.T. 1959. Open-Channel Hydraulics. MacGrawHill Book Co. New York. 697 pp. [33] Nelson, J.M., Shimizu, Abe, T. Asahi, K. Gamou, M. Inoue, T. Iwasaki, Kakinuma, T. Kawumura, S. Kimura, I. Kyura, T. McDonald, R.R. Nabi, M. Nakatsugawa, M. Simões, F.R. Takebayashi, H. y Watanabe. Y. (2016). The international river interface cooperative: Public domain flow and morphodynamics software for education and applications. Advances in Water Resources, 93(a): 62-74. DOI: https://doi.org/10.1016/j.advwatres.2015.09.017 [34] McDonald, R.R., Nelson, J.M y Bennett, J.P. (2005), Multi-dimensional surface‐water modeling system user’s guide, U.S. Geological Survey Techniques and Methods, 6‐B2, 136 pp. [35] Stillwater Sciences. (2012). Lower Tuolumne River Instream Flow Studies: Pulse Flow Study Report. Final. Prepared by Stillwater Sciences, Berkeley, California for Turlock Irrigation District and Modesto Irrigation District, California. 207 pp. [36] Kenney, T.A y Freeman, M.L. (2011). Two-dimensional streamflow simulations of the Jordan River, Midvale and West Jordan, Utah. Prepared in cooperation with the U.S. Environmental Protection Agency. Scientific Investigations Report 2011–5043, 50 pp. [37] Hilldale, R.C., Mooney, D.M. y Collins, K.L. (2007). Identifying Stream Habitat Features With a Two-Dimensional Hydraulic Model. Yakima River Basin Water Storage Feasibility Study, Washington. U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, Colorado Technical Series No. TS-YSS-12. Reclamation Managing Water in West. 39 pp. [38] Patankar, S.V. (1980). Numerical heat transfer and fluid flow. (Hemisphere Series on Computational Methods in Mechanics and Thermal science). CRC Press. 106 pp. [39] Nelson, J.M y McDonald, R.R. (1997). Mechanics and Modeling of Flow and Bed Evolution in Lateral Separation Eddies, Glen Canyon Environmental Studies Report, 69 pp. [40] Jaw, S.Y y Chen, C.J. (1998). Present status of second-order closure turbulence models. I: overview. Journal of Engineering Mechanics, 124(5): 485–501. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1998)124:5(485) [41] Kimura, I. y Hosoda, T. (2003). A non-linear k-
dc.rightsDerechos de autor 2019 Ciencia e Ingeniería Neogranadinaes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourceCiencia e Ingenieria Neogranadina; Vol. 29 No. 2 (2019); 53-68en-US
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 29 Núm. 2 (2019); 53-68es-ES
dc.sourceCiencia e Ingeniería Neogranadina; v. 29 n. 2 (2019); 53-68pt-BR
dc.source1909-7735
dc.source0124-8170
dc.subjectTwo-dimensional modelen-US
dc.subjecthydrodynamic modelen-US
dc.subjectindicator speciesen-US
dc.subjecthydrological regimeen-US
dc.subjectModelo bidimensionales-ES
dc.subjectmodelo hidrodinámicoes-ES
dc.subjectespecie indicadoraes-ES
dc.subjectrégimen hidrológicoes-ES
dc.titleSimulation of physical habitat in Ayuquila-Armeria river in the west of Mexicoen-US
dc.titleSimulation of physical habitat in Ayuquila-Armeria river in the west of Mexicoes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typetextoes-ES


Este ítem pertenece a la siguiente institución