Effect of the concentration of iron in the properties of Nb2O5 with posible photocatalitic application
Efecto de la concentración de hierro en las propiedades del NB2O5 con posible aplicación fotocatalítica
dc.creator | Murillo Ruíz, Edwin Alberto | |
dc.creator | Raba Páez, Angela Mercedes | |
dc.creator | Rincón Joya, Miryam | |
dc.date | 2017-11-29 | |
dc.date.accessioned | 2022-12-15T16:04:20Z | |
dc.date.available | 2022-12-15T16:04:20Z | |
dc.identifier | https://revistas.unimilitar.edu.co/index.php/rcin/article/view/2669 | |
dc.identifier | 10.18359/rcin.2669 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5355685 | |
dc.description | At present, it is searching to develop low gap band energy compounds to be applied in photocatalysis. Niobium pentoxide was doped with iron in order to establish the relationship between its structural, morphological and surface properties, and possible photocatalytic applications. Nb2O5 doped with Fe (at 2.5%, 5% and 10%, percentage by weight) powders were prepared through the Pechini method, this seeking to establish the appropriate synthesis conditions for the formation of Nb2O5: Fe particles. The powders were sintered at 600°C and 700°C for 2 hours in air and afterwards were examined by TGA, XRD, SEM, UV-vis diffuse reflectance spectroscopy and by the BET method. The thermal analysis allowed establishing the behavior of the percentage of weight loss as a function of temperature in the precalcined samples. Results obtained for non-doped oxide were compared with those of Nb2O5 doped with Fe to analyze its crystalline properties. The Nb2O5 doped with Fe at 2.5% and 5% diffractograms, subjected to 700°C, were similar to that of the non-doped oxide indicating that Nb was replaced by Fe and, therefore, there are not significant variations in the oxide structure. The crystallite size of the Nb2O5 doped with Fe nanostructured particles it was increased in all cases, when the sintering temperature was increased from 600°C to 700°C. The gap band energy of Nb2O5:Fe decreased with the temperature increase for the concentrations of 2.5% and 5%. The SBET value increased with the iron concentration increase. The sample Nb2O5:Fe5%, calcined at 700°C, showed an Eg of approximately 2.69 eV and structural and superficial characteristics that make it promising for tests of photocatalytic performance. | en-US |
dc.description | Actualmente, se busca desarrollar compuestos de energía de banda gap baja para ser aplicados en fotocatálisis. Se eligió dopar el pentóxido de niobio con hierro con el fin de establecer la relación entre sus propiedades estructurales, superficiales y ópticas, y posibles aplicaciones fotocatalíticas. Se prepararon polvos de Nb2O5 dopados con Fe (al 2,5%, 5% y 10%, porcentaje en peso) por el método Pechini, buscando establecer las condiciones de síntesis apropiadas para la conformación de partículas de Nb2O5:Fe. Los polvos fueron sinterizados a 600°C y 700°C por 2 h en aire y posteriormente fueron examinados por TGA, DRX, MEB, espectroscopía de reflectancia difusa UV-vis y por el método BET. En las muestras precalcinadas el análisis térmico permitió establecer el comportamiento del porcentaje de pérdida de peso en función de la temperatura. Se compararon los resultados obtenidos para el óxido no dopado con los del Nb2O5 dopado con Fe para analizar sus propiedades cristalinas. Los difractogramas del Nb2O5 dopado con Fe al 2,5% y 5%, sometido a 700°C, fueron similares al del Nb2O5 no dopado indicando que el Nb fue sustituido por el Fe y, por lo tanto, no se presentan variaciones considerables en la estructura del óxido. El tamaño de cristalito de las partículas nanoestructuradas de Nb2O5 dopado con Fe se incrementó en todos los casos, cuando la temperatura de sinterización se incrementó de 600°C a 700°C. La energía de banda gap del Nb2O5:Fe disminuyó con el incremento de la temperatura para las concentraciones de 2,5% y 5%. El valor del SBET aumentó con el incremento de la concentración de hierro. La muestra Nb2O5:Fe5%, calcinada a 700°C, presentó una Eg de aproximadamente 2,69 eV y características estructurales y superficiales que la hacen promisoria para pruebas de desempeño fotocatalítico. | es-ES |
dc.format | application/pdf | |
dc.format | application/xml | |
dc.language | spa | |
dc.publisher | Universidad Militar Nueva Granada | es-ES |
dc.relation | https://revistas.unimilitar.edu.co/index.php/rcin/article/view/2669/2681 | |
dc.relation | https://revistas.unimilitar.edu.co/index.php/rcin/article/view/2669/3052 | |
dc.relation | /*ref*/Fujishima A., Honda K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, pp. 37-38. https://doi.org/10.1038/238037a0 | |
dc.relation | /*ref*/Prado A. G. S., Bolson L. B., Pedroso C. P., Moura A. O., Costa L. L. (2008). Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Applied Catalysis B: Environmental, 82 (3-4), pp. 219-224. https://doi.org/10.1016/j.apcatb.2008.01.024 | |
dc.relation | /*ref*/Lopes O. F., Paris E. C., Ribeiro C. (2014). Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: A mechanistic study. Appl. Catal. B Environ., 144, pp. 800-808. https://doi.org/10.1016/j.apcatb.2013.08.031 | |
dc.relation | /*ref*/Furukawa S., Ohno Y., Shishido T., Teramura K., Tanaka T. (2013). Reaction Mechanism of Selective Photooxidation of Amines over Niobium Oxide: Visible-Light-Induced Electron Transfer between Adsorbed Amine and Nb2O5. J. Phys. Chem. C, 117 (1), pp. 442-450. https://doi.org/10.1021/jp310501h | |
dc.relation | /*ref*/Shishido T. et al. (2009). Mechanism of Photooxidation of Alcohol over Nb2O5. J. Phys. Chem. C, 113 (43), pp. 18713-18718. https://doi.org/10.1021/jp901603p | |
dc.relation | /*ref*/Chen X. et al. (2007). Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Appl. Surf. Sci., 253 (20), pp. 8500-8506. https://doi.org/10.1016/j.apsusc.2007.04.035 | |
dc.relation | /*ref*/Lai F., Lin L., Huang Z., Gai R., Qu Y. (2006). Effect of thickness on the structure, morphology and optical properties of sputter deposited Nb2O5 films. Applied Surface Science, 253 (4), pp. 1801–1805. https://doi.org/10.1016/j.apsusc.2006.03.014 | |
dc.relation | /*ref*/Wang Y. D., Yang L. F., Zhou Z. L., Li Y.F., Wu X.H. (2001). Effects of calcining temperature on lattice constants and gas-sensing properties of Nb2O5. Materials Letters, 49 (5), pp. 277-281. https://doi.org/10.1016/S0167-577X(00)00384-0 | |
dc.relation | /*ref*/Rajan J., Velmurugan T., Seeram R. (2009). Metal oxides for dye-sensitized solar cells. J. Am. Ceram, Soc. 92 (2), pp. 289-291. https://doi.org/10.1111/j.1551-2916.2008.02870.x | |
dc.relation | /*ref*/Lira-Cantua M., Krebsb F.C. (2006). Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2): Performance improvement during long-time irradiation. Sol. Energy Mater. Sol. Cells, 90 (14), pp. 2076–2086. https://doi.org/10.1016/j.solmat.2006.02.007 | |
dc.relation | /*ref*/Nowak I., Ziolek M. (1999). Niobium compounds: preparation, characterization, and application in heterogeneous catalysis chemical reviews. Chem. Rev., 99 (12), pp 3603–3624. https://doi.org/10.1021/cr9800208 | |
dc.relation | /*ref*/Schäfer H., Gruehn R., Schulte F. (1966). The modifications of Niobium Pentoxide. Angewandte Chemie International Edition in English, 5 (1), pp. 40-52. https://doi.org/10.1002/anie.196600401 | |
dc.relation | /*ref*/Herval L.K.S. et al. (2015). The role of defects on the structural and magnetic properties of Nb2O5. Journal of Alloys and Compounds, 653, pp. 358-362. https://doi.org/10.1016/j.jallcom.2015.09.019 | |
dc.relation | /*ref*/Falcomer D., Speghini A., Ibba G., Enzo S., Cannas C., Musinu A., Bettinelli M. (2007). Morphology and Luminescence of Nanocrystalline Nb2O5 Doped with Eu3+. Journal of Nanomaterials, 2007. https://doi.org/10.1155/2007/94975 | |
dc.relation | /*ref*/Hu B., Liu Y. (2015). Nitrogen-doped Nb2O5 nanobelt quasi-arrays for visible light photocatalysis. Journal of Alloys and Compounds, 635, pp. 1-4. https://doi.org/10.1016/j.jallcom.2015.02.109 | |
dc.relation | /*ref*/Ramanjaneya Reddy G., Chennakesavulu K. (2014). Synthesis and characterization of Nb2O5 supported Pd(II)@SBA15: Catalytic activity towards oxidation of benzhydrol and Rhodamine-B. Journal of Molecular Structure, 1075 (5), pp. 406-412. https://doi.org/10.1016/j.molstruc.2014.06.090 | |
dc.relation | /*ref*/Honga S. H., Kwonb S. N., Baea J.S., Song M. Y. (2009). Hydrogen-storage properties of gravity cast and melt spun Mg–Ni–Nb2O5 alloys. International journal of hydrogen energy, 34 (4), pp. 1944-1950. https://doi.org/10.1016/j.ijhydene.2008.12.015 | |
dc.relation | /*ref*/Barbosa López A. L., Castro Sierra I. M. (2012). Estudio catalítico comparativo de los sistemas TiO2 y Nb2O5•3H2O en la degradación de cianuro en función del tipo de oxidante. Ingeniería y Ciencia, 8 (16), pp. 257-280. | |
dc.relation | /*ref*/Pechini M.P. Method of preparing lead and alkaline Earth titanates and niobates and coating method using the same to form a Capacitor. US Patent Specification 3330697. | |
dc.relation | /*ref*/Raba A. M., Barba-Ortega J., R. Joya M. (2015). The effect of the preparation method of Nb2O5 oxide influences the performance of the photocatalytic activity. Appl. Phys. A, 119 (3), pp. 923-928. https://doi.org/10.1007/s00339-015-9041-3 | |
dc.relation | /*ref*/Kato K, Tamura S. (1975). Die Kristallstruktur von T-Nb2O5. Acta Crystallographica Section B, B31, pp. 673-677. https://doi.org/10.1107/s0567740875003603 | |
dc.relation | /*ref*/Lessing P. (1989). Mixed-cations oxide powders via polymeric precursors. American Ceramic Society Bolletin, 68(5), pp. 1002-1007. | |
dc.relation | /*ref*/Escobedo Morales A., Sánchez Mora E., and Pal U. (2007). Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Física S, 53 (5), pp. 18-22. | |
dc.rights | Derechos de autor 2017 Ciencia e Ingeniería Neogranadina | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0 | es-ES |
dc.source | Ciencia e Ingenieria Neogranadina; Vol. 28 No. 2 (2018); 29-42 | en-US |
dc.source | Ciencia e Ingeniería Neogranadina; Vol. 28 Núm. 2 (2018); 29-42 | es-ES |
dc.source | Ciencia e Ingeniería Neogranadina; v. 28 n. 2 (2018); 29-42 | pt-BR |
dc.source | 1909-7735 | |
dc.source | 0124-8170 | |
dc.subject | Nb2O5 | en-US |
dc.subject | Fe | en-US |
dc.subject | Pechini method | en-US |
dc.subject | thermal treatment | en-US |
dc.subject | structural properties photocatalysis | en-US |
dc.subject | Nb2O5 | es-ES |
dc.subject | Fe | es-ES |
dc.subject | método Pechini | es-ES |
dc.subject | tratamiento térmico | es-ES |
dc.subject | propiedades estructurales | es-ES |
dc.subject | fotocatálisis | es-ES |
dc.title | Effect of the concentration of iron in the properties of Nb2O5 with posible photocatalitic application | en-US |
dc.title | Efecto de la concentración de hierro en las propiedades del NB2O5 con posible aplicación fotocatalítica | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion |