Colombia | info:eu-repo/semantics/article

Selección óptima del factor de ajuste CA-CFAR para clutter marino de potencia K estadísticamente variable

dc.creatorMachado Fernández, José Raúl
dc.creatorBacallao Vidal, Jesús de la Concepción
dc.date2017-01-18
dc.date.accessioned2022-12-15T16:04:01Z
dc.date.available2022-12-15T16:04:01Z
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/1714
dc.identifier10.18359/rcin.1714
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5355661
dc.descriptionThe presence of the sea clutter interfering signal sets limitations on the quality of radar detection in coastal and ocean environments. The CA-CFAR processor is the classic solution for detecting radar targets. It usually operates keeping constant its adjustment factor during the entire operation period. As a consequence, the scheme does not take into account the slow statistical variations of the background signal when performing the clutter discrimination. To solve this problem, the authors conducted an intensive processing of 40 million computer generated clutter power samples in MATLAB. As a result, they found the optimal adjustment factor values to be applied in 40 possible clutter statistical states, suggesting thus the use of the CA-CFAR architecture with a variable adjustment factor. In addition, a curve fitting procedure was performed, obtaining mathematical expressions that generalize the results for the whole addressed range of clutter statistical states. The experiments were executed with a 64 cells CA-CFAR and found the adjustment factor values for three common false alarms probabilities. The K distribution was used as clutter model, thanks to its wide popularity. This paper facilitates the handling of the K power distribution avoiding the use of Gamma and Bessel functions, commonly found in developments related to the K model. Moreover, requirements for building an adaptive clutter detector in K power clutter with a priori knowledge of the shape parameter were fulfill. Also, several recommendations are given to continue the development of a more overall solution which will also include the estimation of the shape parameter.en-US
dc.descriptionLa presencia de la señal interferente de clutter marino establece limitaciones en la calidad de la detección de radar en ambientes costeros y de alta mar. El procesador CA-CFAR es la solución clásica para detectar blancos de radar. Usualmente mantiene su factor de ajuste constante todo el período de operación. Como consecuencia, el esquema no toma en consideración las variaciones estadísticas de la señal de fondo cuando realiza la discriminación del clutter. Para resolver este problema, los autores realizaron un procesamiento intensivo de 40 millones de muestras de clutter de intensidad, generadas en computadora a través de MATLAB. Como resultado, encontraron los valores óptimos del factor de ajuste a ser aplicados para 40 posibles estados estadísticos del clutter, sugiriendo el uso de la arquitectura CA-CFAR con un factor de ajuste variable. Adicionalmente, fue llevado a cabo un ajuste de curvas, obteniéndose expresiones matemáticas que generalizan los resultados en todo el intervalo de considerado de estados estadísticos del clutter. Los experimentos se ejecutaron con un CA-CFAR de 64 celdas y apuntaron a encontrar los valores del factor de ajuste para tres probabilidades de falsa alarma comunes. La distribución K fue elegida como el modelo usado para el clutter, gracias a su amplia popularidad. Este artículo facilita el manejo de la distribución K de intensidad, evitando el uso de funciones Gamma y Bessel, comúnmente encontradas en desarrollos relacionados con el modelo K. Además, fueron cumplidos los requerimientos necesarios para construir un detector adaptativo en clutter de potencia K con conocimiento previo del parámetro de forma. Al mismo tiempo, fueron dadas varias recomendaciones para continuar el desarrollo de una solución más general que también incluirá la estimación del parámetro de forma.es-ES
dc.formatapplication/pdf
dc.formattext/html
dc.formatapplication/x-rar
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/1714/1680
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/1714/2484
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/1714/3087
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/1714/3088
dc.relation/*ref*/Melvin, W. L. & Scheer, J. A (2014). Principles of Modern Radar, Vol III Radar Applications. New Jersey, United States of America: Scitech Publishing, pp. 1-15.
dc.relation/*ref*/Skolnik, M. I. (2008). Radar Handbook (3er edition). New York, United States of America: McGraw-Hill, pp. 15-17.
dc.relation/*ref*/Ward, K., Tough, R. & Watts, S. (2013). Sea Clutter Scattering, the K Distribution and Radar Performance (2nd edition). London, United Kingdom: The Institution of Engineering and Technology, pp. 311- 338. doi: 10.1049/pbra025e
dc.relation/*ref*/Rohling, H. (1983). Radar CFAR Thresholding in Clutter and Multiple Target Situations. IEEE Transactions on Aerospace and Electronic Systems, 19(4), pp. 608-621. doi: 10.1109/TAES.1983.309350
dc.relation/*ref*/Sánchez Rams, R. C. (2014). Implementación del detector CA-CFAR en VHDL para crear un PC-Radar Cubano usando FPGA (Tesis en opción al título de Ingeniero en Telecomunicaciones y Electrónica), Departamento de Telecomunicaciones y Telemática, Facultad de Ingeniería Eléctrica, Universidad Tecnológica de la Habana (CUJAE), La Habana, Cuba.
dc.relation/*ref*/Farina, A. & Studer, F. A. (1986). A Review of CFAR Detection Techniques in Radar Systems, Microwave Journal, 29(1), pp. 115-118.
dc.relation/*ref*/Weingberg, G. V. (2004). Estimation of False Alarm Probabilities in Cell Averaging Constant False Alarm Rate Detectors via Monte Carlo Methods, Tech report ADA429631, DSTO Systems Sciences Laboratory, Salisbury, Australia.
dc.relation/*ref*/Takahashi, S. (2010). A CFAR Circuit of Detecting Spatially Correlated Target for Automotive UWB Radars (Master Thesis), Faculty of Information Sciences, Hiroshima City University.
dc.relation/*ref*/Caso, G. & De Nardis, L. (2013) “Cooperative Spectrum Sensing based on Majority decision under CFAR and CDR constraints”. Presented in IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications, Workshop on Cognitive Radio Medium Access Control and Network Solutions, New York, United States of America, 8-9 Sept, pp. 51 – 55. doi: 10.1109/pimrcw.2013.6707835
dc.relation/*ref*/de Figueiredo, F. (2013). LTE Random Access Detection Based on a CA-CFAR Strategy (Thesis), Convergent Networks Department, Research and Development Center Campinas, SP - Brazil.
dc.relation/*ref*/Qin, Y. & Gong, H. (2013). A New CFAR Detector based on Automatic Censoring Cell Averaging and Cell Averaging, TELKOMNIKA, 11(6), pp. 3298-3303. doi: 10.11591/telkomnika.v11i6.2686
dc.relation/*ref*/Van Cao, T. (2012). Non-homogeneity Detection in CFAR Reference Windows using the Mean-to-Mean Ration Test. Tech report ADA554930, DSTO Defence Science and Technology Organization, Edinburgh, Australia.
dc.relation/*ref*/Kumar Yadav, A. & Kant, L. (2013). Moving Target Detection using VI-CFAR Algorithm on MATLAB Platform, International Journal of Advanced Research in Computer Science and Software Engineering, 3(12).
dc.relation/*ref*/Magaz, B. & Belouchrani, A. (2011). Automatic Threshold Selection in OS-CFAR Radar Detection using Information Theoretic Criteria, Progress In Electromagnetics Research B, 30(1), pp. 157-175. doi: 10.2528/PIERB10122502
dc.relation/*ref*/Machado Fernández, J. R. & Bacallao Vidal, J. C. (2014). MATE-CFAR: Ambiente de Pruebas para Detectores CFAR en MATLAB, Telem@tica, 13(3), pp. 86-98.
dc.relation/*ref*/Greco, M., Bordoni, F. & Gini, F. (2004). X-Band Sea-Clutter nonstationarity: Influence of Long Waves, IEEE Journal of Oceanic Engineering, 29(2), pp. 269-283.
dc.relation/*ref*/Chen, Z., Liu, X., Wu, Z. & Wang, X. (2013). “The Analysis of Sea Clutter Statistics Characteristics Based on the Observed Sea Clutter of Ku-Band Radar”. Presented in IEEE Proceedings of the International Symposium on Antennas & Propagation, pp. 1183-1186.
dc.relation/*ref*/Watts, S. & Rosenberg, L. (2013). “A Review of High Grazing Angle Sea Clutter”. Presented at the IEEE 2013 International Conference on Radar. doi: 10.1109/RADAR.2013.6651992
dc.relation/*ref*/Fay, F. A., Clarke, J. & Peters, R. S. (1977). “Weibull Distribution Applied to Seaclutter”, Presented in Proceedings Inst. Elect. Eng. Radar Conf. ’77, London, U.K., pp. 101–103.
dc.relation/*ref*/Ping, Q. (2011). “Analysis of Ocean Clutter for Wide-Band Radar Based on Real Data”. Presented in Proceedings of the 2011 International Conference on Innovative Computing and Cloud Computing, Wuhan, China, pp. 121-124. doi: 10.1145/2071639.2071669
dc.relation/*ref*/Trunk, G. V. & George, S. F. (1970). Detection of targets in Non-Gaussian Sea Clutter, IEEE Transactions, 6(1), pp. 620- 628. doi: 10.1109/TAES.1970.310062
dc.relation/*ref*/Ishii, S., Sayama, S. & Mizutani, K. (2011). Effect of Changes in Sea-Surface State on Statistical Characteristics of Sea Clutter with X-band Radar, Wireless Engineering and Technology, 2(3), pp. 175-183. doi: 10.4236/wet.2011.23025
dc.relation/*ref*/Gato Martínez, I. (2014). Algoritmo para la Estimación de la Distribución del Clutter Marino (Tesis en opción al título de Ingeniero en Telecomunicaciones y Electrónica), Departamento de Telecomunicaciones y Telemática, Facultad de Ingeniería Eléctrica, Universidad Tecnológica de la Habana (CUJAE), La Habana, Cuba.
dc.relation/*ref*/Machado Fernández, J. R. (2015). Estimation of the Relation between Weibull Distributed Sea clutter and the CA-CFAR Scale Factor, Journal of Tropical Engineering, 25(2), pp. 19-28. doi: 10.15517/jte.v25i2.18209
dc.relation/*ref*/Machado Fernández, J. R., Bacallao Vidal, J. C. & Chávez Ferry, N. (2015). A Neural Network Approach to Weibull Distributed Sea Clutter Parameter’s Estimation, Inteligencia Artificial, 18(56), pp. 3-13. doi: 10.15517/jte.v25i2.18209
dc.relation/*ref*/Ward, K. D. (1981) Compound Representation of High Resolution Sea Clutter, Electronic Letters, 17(16), pp. 561-563. doi: 10.1049/el:19810394
dc.relation/*ref*/Abraham, D. A. & Preston, J. R. (2010). Statistical Analysis of Monostatic and Bistatic Echoes from ShipWreck, IEEE Journal of Oceanic Engineering, 25(2), pp. 1-15.
dc.relation/*ref*/Nohara, T. J. & Haykin, S. (1991). “Canadian East Coast Radar Trials and the K-Distribution”. Presented in IEEE Proceedings on Radar and Signal Processing, pp. 80-88. doi: 10.1049/ip-f-2.1991.0013
dc.relation/*ref*/Dong, Y. (2006). Distribution of X-Band High Resolution and High Grazing Angle Sea Clutter, Technical Report DSTO-RR-0316, Electronic Warfare and Radar Division, Defence Science and Technology Organisation, Edinburgh, Australia.
dc.relation/*ref*/Cetin, A. (2008). CFAR Detection in K-Distributed Sea Clutter, Master of Science in Electrical and Electronics Engineering, The Graduate School of Natural and Applied Sciences of Middle East Technical University.
dc.relation/*ref*/Bocquet, S. (2012). Calculation of Radar Probability of Detection in K-Distributed Sea Clutter and Noise, Technical Report DSTO-TN-1000, Joint Operations Division, Defence Science and Technology Organization, Edinburg, Australia.
dc.relation/*ref*/Machado Gil, A. & García Delgado, B. (2014) Reconocimiento de Parámetros Asociados a distribuciones del Clutter Marino con Redes Neuronales Artificiales (Tesis en opción Ingeniero en opción al título de Ingenieron en Telecomunicaciones y Electrónica), Grupo de Radares, Departamento de Telecomunicaciones y Telemática, IUniversidad Tecnológica de la Habana (CUJAE), La Habana, Cuba.
dc.rightsDerechos de autor 2016 Ciencia e Ingeniería Neogranadinaes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourceCiencia e Ingenieria Neogranadina; Vol. 27 No. 1 (2017); 61-76en-US
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 27 Núm. 1 (2017); 61-76es-ES
dc.sourceCiencia e Ingeniería Neogranadina; v. 27 n. 1 (2017); 61-76pt-BR
dc.source1909-7735
dc.source0124-8170
dc.subjectsea clutteren-US
dc.subjectK power distributionen-US
dc.subjectCA-CFAR detectoren-US
dc.subjectselection of the adjustment factoren-US
dc.subjectadaptive detection thresholdsen-US
dc.subjectclutter marinoes-ES
dc.subjectdistribución K de la potenciaes-ES
dc.subjectdetector de promediación CA-CFARes-ES
dc.subjectselección del factor de ajustees-ES
dc.subjectadaptación del umbral de detecciónes-ES
dc.titleOptimal selection of the CA-CFAR adjustment factor for K power sea clutter with statistical variationsen-US
dc.titleSelección óptima del factor de ajuste CA-CFAR para clutter marino de potencia K estadísticamente variablees-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución