Respuesta biológica, nutricional y hematoinmune en juveniles Cherax quadricarinatus (Decapoda: Parastacidae) alimentados con mezcla probiótica

dc.creatorMéndez Martínez, Yuniel
dc.creatorTorres-Navarrete, Yenny G.
dc.creatorCortés-Jacinto, Edilmar
dc.creatorGarcía-Guerrero, Marcelo U.
dc.creatorHernández-Hernández, Luis H.
dc.creatorVerdecía , Danis M.
dc.date2022-09-01
dc.date.accessioned2022-12-15T14:43:51Z
dc.date.available2022-12-15T14:43:51Z
dc.identifierhttps://revistamvz.unicordoba.edu.co/article/view/2578
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5353508
dc.descriptionObjective: To evaluate the effect on biological, nutritional, and hematoimmune indicators of juvenile Cherax quadricarinatus were cultivated and fed with a probiotic mixture. Materials and Methods: A completely randomized design (DCA) with six treatments: 0 (control), 1×102 µL, 2×102 µL, 3×102 µL, 4×102 µL and 5×102 µL of a probiotic mixture (Bacterol Shrimp Forte), with three repetitions each, 18 experimental tanks of diameter 1.7 m and area of 2.26 m2 were used, with a density of 20 juveniles (0.95 ± 0.10g and 7.78 ± 0.77mm) per tank for 60 days. Biological (weight, length, weight gain, weight increase, specific growth rate, length gain, length increase and survival), nutritional (feed conversion, feed efficiency and protein efficiency rate) and hematoimmune (total of hemocytes, differential hemocytes, phagocytic rate, superoxide dismutase and hypoxic stress) parameters were measured. Results: For biological indicators, the best results (p < 0.05) were obtained when using 4×102 µL of the probiotic (final weight: 9.11 g; final length: 68.95 mm; specific growth rate: 3.74). Regarding the nutritional parameters, the best results were found with for 3×102 µL (feed conversion: 1.09, feed efficiency: 0.91, and protein efficiency: 2.61); although there were no differences between 3×102 and 4×102 µL. For the hematoimmune response, there were differences (p < 0.05) for all the indicators under study, with a better performance for 4×102 µL of the probiotic mixture. Conclusions: The probiotic mixture induces the hematoimmune, biological, and nutritional response with the best response for concentrations of 3×102 µL, 4×102 µL.en-US
dc.descriptionObjetivo: Evaluar indicadores biológicos, nutricionales y hematoinmunes en juveniles Cherax quadricarinatus que fueron cultivados y alimentados con una mezcla de probióticos. Materiales y métodos: Un diseño completamente aleatorizado (DCA) con seis tratamientos: 0 (control), 1×102 µL, 2×102 µL, 3×102 µL, 4×102 µL y 5×102 µL de mezcla de probióticos (Bacterol Shrimp Forte), con tres repeticiones cada una; se utilizaron 18 tanques experimentales de diametro 1.7 m y área de 2.26 m2, con una densidad de 20 juveniles (0.95±0.10 g y 7.78±0.77mm) por tanque durante 60 días. Se midieron los parámetros biológicos (peso, longitud, aumento de peso, aumento de peso, tasa de crecimiento específico, aumento de longitud, aumento de longitud y supervivencia), nutricionales (conversión alimenticia, eficiencia alimenticia y eficiencia proteica) y hematoinmune (total de hemocitos, hemocitos diferenciales, tasa fagocítica, superóxido dismutasa y estrés hipóxico). Resultados: Para los indicadores biológicos, los mejores resultados (p<0.05) se obtuvieron al utilizar 4×102 µL del probiótico (peso final: 9.11 g; longitud final: 68.95 mm; tasa de crecimiento específico: 3.74). En cuanto a los parámetros nutricionales, los mejores resultados se obtuvieron con 3×102 µL (conversion alimenticia: 1.09, eficiencia alimenticia: 0.91 y eficiencia proteica: 2.61); aunque no hubo diferencias entre 3×102 y 4×102 µL. Para la respuesta hematoinmune, hubo diferencias (p <  0.05) para todos los indicadores en estudio, con un mejor desempeño para 4×102 µL de la mezcla de probióticos. Conclusiones: La mezcla de probióticos induce la respuesta hematoinmune, biológica y nutricional con la mejor respuesta para concentraciones de 3×102 µL y 4×102 µL.es-ES
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formataudio/mpeg
dc.formataudio/mpeg
dc.languagespa
dc.languageeng
dc.publisherUniversidad de Córdobaes-ES
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2578/4954
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2578/4955
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2578/4956
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2578/4957
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2578/4953
dc.relation/*ref*/1. Sonnenholzner-Varas JI. ¿Hacia dónde va la acuicultura de equinodermos en América Latina? Potencial, retos y oportunidades. Rev Biol Trop. 2021; 69(S1):514-549. https://doi.org/10.15517/rbt. v69iSuppl.1.46393
dc.relation/*ref*/2. FAO. FishStatJ tool for fishery statistics analysis, Release 2.0.0. Universal software for fishery statistical time series. Global capture and aquaculture production: Quantities 1950-2019; Aquaculture values 1984-2019. Food and Agriculture Organization (FAO) Fisheries Department, Fishery Information, Data and Statistics Unit. Rome; 2021. https://www.fao.org/fishery/statistics/software/fishstatj/en
dc.relation/*ref*/3. Numes AL, Zengeya TS, Hoffman AC, Measey GJ, Wey OLF. Distribution and establishment of the alien Australian redclaw crayfish, Cherax quadricarinatus, in South Africa and Swaziland. PeerJ. 2017; 5:e3135. https://doi.org/10.7717/peerj.3135
dc.relation/*ref*/4. Méndez-Martínez Y, Ceseña CE, Luna-González A, García-Guerrero MU, Martinez-Porchas M, Campa-Cordova AI, et al. Effects of different dietary protein‐energy ratios on growth, carcass amino acid and fatty acid profile of male and female Cherax quadricarinatus (von Martens, 1868) pre‐adults. Aquac Nutr. 2021. 00: 1-16. https://doi.org/10.1111/anu.13379
dc.relation/*ref*/5. Norshida I, Mohd-Nasir MSA, Khaleel AG, Sallehuddin AS, Syed Idrus SN, Istiqomah I, et al. First wild record of Australian redclaw crayfish Cherax quadricarinatus (von Martens, 1868) in the East Coast of Peninsular Malaysia. Bioinvasions Rec. 2021; 10(2):360–368. https://doi.org/10.3391/bir.2021.10.2.14
dc.relation/*ref*/6. Seenivasan C, Saravana Bhavan P, Radhakrishnan S. Effect of probiotics (BinifitTM) on survival, growth, biochemical constituents and energy budget of the freshwater prawn Macrobrachium rosenbergii post larvae. Elixir Aquaculture. 2011; 41:5919-5927. https://www.elixirpublishers.com/index.php?route=product/search&filter_name=macrobrachium&filter_type=Anywhere
dc.relation/*ref*/7. Sapcharoen P, Rengpipat S. Effects of the probiotic Bacillus subtilis (BP 11 and BS 11) on the growth and survival of Pacific white shrimp, Litopenaeus vannamei. Aquac Nutr. 2013; 19(6):946-954. https://doi.org/10.1111/anu.12040
dc.relation/*ref*/8. Peredo AM, Buentello A, Gatlin DMIII, Hume M. Evaluation of a Dairy-Yeast Prebiotic in the Diet of Juvenile Nile Tilapia, Oreochromis niloticus. J World Aquac Soc. 2015; 46:92–101. https://doi.org/10.4025/actascianimsci.v42i1.47960
dc.relation/*ref*/9. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, et al. Antimicrobial use in aquaculture re‐examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol. 2013; 15(7):1917-1942. https://doi.org/10.1111/1462-2920.12134
dc.relation/*ref*/10. Kuebutornye FK, Abarike ED, Lu Y. A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol. 2019; 87:820-828. https://doi.org/10.1016/j.fsi.2019.02.010
dc.relation/*ref*/11. Sumon MS, Ahmmed F, Khushi SS, Ahmmed MK, Rouf MA, Hasan-Chisty MA, et al. Growth performance, digestive enzyme activity and immune response of Macrobrachium rosenbergii fed with probiotic Clostridium butyricum incorporated diets. J King Saud Univ Sci. 2018; 30(1):21-28. http://dx.doi.org/10.1016/j.jksus.2016.11.003
dc.relation/*ref*/12. Foysal J, Fotedar R, Siddik MA, Chaklader R, Tay A. Lactobacillus plantarum in black soldier fly (Hermetica illucens) meal modulates gut health and immunity of freshwater crayfish (Cherax cainii). Fish Shellfish Immunol. 2021; 108: 42-52. https://doi.org/10.1016/j.fsi.2020.11.020
dc.relation/*ref*/13. Wee WC, Mok CH, Romano N, Ebrahimi M, Natrah I. Dietary supplementation use of Bacillus cereus as quorum sensing degrader and their effects on growth performance and response of Malaysian giant river prawn Macrobrachium rosenbergii juvenile towards Aeromonas hydrophila. Aquac Nutr. 2018; 24(6):1804-1812. https://doi.org/10.1111/anu.12819
dc.relation/*ref*/14. Amrullah A, Wahidah W. Immune response and growth performance of crayfish Cherax quadricarinatus fed with synbiotic supplemented diet. JAI. 2019; 18(1):33-45. https://doi.org/10.19027/jai.18.1.33-45
dc.relation/*ref*/15. Rebecca M, Gao Q, Sun C, Liu B, Song C, Adisu D, et al. Effect of dietary Clostridium butyricum and different feeding patterns on growth performance, antioxidant and immune capacity in freshwater prawn (Macrobrachium rosenbergii). Aquac Res. 2020; 52(1):12-22. https://doi.org/10.1111/are.14865
dc.relation/*ref*/16. Ambas I, Fotedar R, Buller N. Health Status of Marron, Cherax cainii (Austin, 2002) Fed Customized Probiotic Bacillus mycoides. J Aquac Mar Biol. 2017; 6(4):00165. http://dx.doi.org/10.15406/jamb.2017.06.00165
dc.relation/*ref*/17. Phupet B, Pitakpornpreecha T, Baowubon N, Runsaeng P, Utarabhand P. Lipopolysaccharide-and β-1, 3-glucan-binding protein from Litopenaeus vannamei: purification, cloning and contribution in shrimp defense immunity via phenoloxidase activation, Dev Comp Immunol. 2018; 81:167-179. https://doi: 10.1016/j.dci.2017.11.016
dc.relation/*ref*/18. Kuebutornye FKA, Abarike ED, Lu Y. A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol. 2019; 87:820-828. https://doi.org/10.1016/j.fsi.2019.02.010
dc.relation/*ref*/19. Babu DT, Antony SP, Joseph SP, Bright AR, Philip R. Marine yeast Candida aquaetextoris S527 as a potential immunostimulant in black tiger shrimp Penaeus monodon. J Inverte Pathol. 2013; 112(3):243–252. https://doi.org/10.1016/j.jip.2012.12.002
dc.relation/*ref*/20. Vine NG, Leukes WD, Kaiser H. Probiotics in marine larviculture. FEMS Microbiol Rev. 2016; 30(3):404-427. https://doi.org/10.1111/j.1574-6976.2006.00017.x
dc.relation/*ref*/21. Méndez-Martínez Y, Pacheco-Morales GK, Del Barco-Ibarra KA, Torres-Navarrete YG, Hernández-Vergara MP. Respuesta bioquímica e inmune en tilapia roja (Oreochromis mossambicus × O. niloticus) con suplementación de quitosano en dieta. Rev Fac Agron Luz. 2021; 38(4), 1016-1034. https://doi.org/10.47280/RevFacAgron(LUZ).v38.n4.15
dc.relation/*ref*/22. AOAC (Association of Official Agricultural Chemists). Official methods of analysis of AOAC International. 21st ed., Rockville, MD, USA: AOAC; 2019. https://www.aoac.org/wp-content/uploads/2019/08/Front-Matter-List-of-Changes-2.pdf
dc.relation/*ref*/23. Méndez-Martínez Y, García-Guerrero MU, Arcos-Ortega FG, Martínez-Córdova LR, Yamasaki-Granados S, Pérez-Rodríguez JC, et al. Effect of different ratios of dietary protein-energy on growth, body proximal composition, digestive enzyme activity, and hepatopancreas histology in Macrobrachium Americanum (Bate, 1868) prawn juveniles. Aquaculture. 2018; 485:1–11. https://doi.org/10.1016/j.aquaculture.2017.11.012
dc.relation/*ref*/24. Vargas-Albores F, Guzman MA, Ochoa JL. A lipopolysaccharide binding agglutinin isolated from brown shrimp (Penaeus californiensis Holmes) haemolymph. Comp Biochem Physiol. 1993; 104:407-413. https://doi.org/10.1016/0305-0491(93)90387-K
dc.relation/*ref*/25. Johansson M, Keyser P, Sritunyalucksana K, Söderhäll K. Crustacean haemocytes and haematopoiesis. Aquaculture. 2000; 191:45-52. https://doi.org/10.1016/S0044-8486(00)00418-X
dc.relation/*ref*/26. Hauton C L. The use of the neutral red retention assay to examine the effects of temperature and salinity on haemocytes of the European flat oyster Ostrea edulis (L). Comp Biochem Physiol B, Biochem Mol Biol. 1998; 119(4):619–623. https://doi.org/10.1016/S0305-0491(98)00036-4
dc.relation/*ref*/27. Chen H, Mai K, Zhang W, Liufu Z, Xu W, Tan B. Effects of dietary pyridoxine on immune responses in abalone, Haliotis discus hannai Ino. Fish Shellfish Immunol. 2005; 19(3):241–252. https://doi.org/10.1016/j.fsi.2004.12.006
dc.relation/*ref*/28. Hagerman L. Haemocyanin concentration of juvenile lobsters (Homarus gammarus) in relation to moulting cycle and feeding conditions. Mar Biol. 1983; 17:11-17. https://doi.org/10.1007/BF00393205
dc.relation/*ref*/29. Chen W, Cheng JC. Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium rosenbergii. Fish Shellfish Immunol. 2000; 10: 387-391. https://doi.org/10.1006/fsim.2000.0264Ç
dc.relation/*ref*/30. Jones CM, Valverde C. Development of Mass Production Hatchery Technology for the Redclaw Crayfish, Cherax quadricarinatus. Freshw Crayfish. 2020; 25(1):1–6. https://doi.org/10.5869/fc.2020.v25-1.001.
dc.relation/*ref*/31. Gainza O, Romero J. Manano oligosacáridos como prebióticos en acuicultura de crustáceos. Lat Am J Aquat Res. 2017; 45(2):246-260 https://doi.org/10.3856/vol455-issue2-fulltext-2
dc.relation/*ref*/32. Paul P, Rahman A, Ghosh A. Observation of probiotics effect on the growth, survival and production of giant freshwater prawn (Macrobrachium rosenbergii) in south-west part of Bangladesh. Int J Biosci. 2019; 14(3):45-53. http://dx.doi.org/10.12692/ijb/14.3.45-53
dc.relation/*ref*/33. Pérez-Chabela ML, Alvarez-Cisneros YM, Soriano-Santos J, Pérez-Hernández MA. Los probióticos y sus metabolitos en la acuicultura. Una Revisión. Hidrobiológica. 2020; 30(1):93-105. https://doi.org/10.24275/uam/izt/dcbs/hidro/2020v30n1
dc.relation/*ref*/34. Madani NSH, Adorian TJ, Ghafari-Farsani H, Hoseinifar SH. The effects of dietary probiotic Bacilli (Bacillus subtilis and Bacillus licheniformis) on growth performance, feed efficiency, body composition and immune parameters of whiteleg shrimp (Litopenaeus vannamei) postlarvae. Aquac Res. 2018; 49:1926-1933. https://doi.org/10.1111/are.13648
dc.relation/*ref*/35. Zhao C, Zhu J, Hu J, Dong X, Sun L, Zhang X, et al. Effects of dietary Bacillus pumilus on growth performance, innate immunity and digestive enzymes of giant freshwater prawns (Macrobrachium rosenbergii). Aquac Nutr. 2019; 25(3):712-720. https://doi.org/10.1111/anu.12894
dc.relation/*ref*/36. Valipour A, Nedaei S, Noori A, Asghar A, Hossein S. Dietary Lactobacillus plantarum affected on some immune parameters, air exposure stress response, intestinal microbiota, digestive enzyme activity and performance of narrow clawed crayfish (Astacus leptodactylus, Eschscholtz). Aquaculture. 2019; 504:121-130. https://doi.org/10.1016/j.aquaculture.2019.01.064
dc.relation/*ref*/37. Azad MAK, Islam SS, Sithi IN, Ghosh AK, Banu GR, Bir J, et al. Effect of probiotics on immune competence of giant freshwater. prawn Macrobrachium rosenbergii. Aquac Res. 2018; 50(2):644-657. https://doi.org/10.1111/are.13942
dc.relation/*ref*/38. Soberanes-Yepiz ML, Méndez-Martínez Y, García-Guerrero MU, Ascencio F, Violante-González J, García-Ibañez S, et al. Superoxide dismutase activity in tissues of juvenile cauque river prawn (Macrobrachium americanum Bate, 1868) fed with different levels of protein and lipid. Lat Am J Aquat Res. 2018; 46(3):543-550. https://doi.org/10.3856/vol46-issue3-fulltext-7
dc.relation/*ref*/39. Ranjit-Kumar N, Prakash-Raman R, Jadhao SB, Kumar-Brahmchari R, Kumar K, Dash G. Effect of dietary supplementation of Bacillus licheniformis on gut microbiota, growth and immune response in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Aquacult Int. 2013; 21:387-403. https://doi.org/10.1007/s10499-012-9567-8
dc.rightsDerechos de autor 2022 Yuniel Méndez Martínez, Yenny G. Torres-Navarrete, Edilmar Cortés-Jacinto, Marcelo U. García-Guerrero, Luis H. Hernández-Hernández, Danis M. Verdecíaes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceJournal MVZ Cordoba; Vol. 27 No. 3 (2022): Vol. 27 Núm. 3 (2022): Revista MVZ Córdoba Volumen 27(3) Septiembre-Diciembre 2022; e2578en-US
dc.sourceRevista MVZ Córdoba; Vol. 27 Núm. 3 (2022): Vol. 27 Núm. 3 (2022): Revista MVZ Córdoba Volumen 27(3) Septiembre-Diciembre 2022; e2578es-ES
dc.source1909-0544
dc.source0122-0268
dc.source10.21897/rmvz.v27.n3.2022
dc.subjectGrowth rateen-US
dc.subjecthemocytes cellsen-US
dc.subjecthypoxic stressen-US
dc.subjectphagocytic activityen-US
dc.subjectsurvivalen-US
dc.subjectcélulas hemocitoses-ES
dc.subjectestrés hipóxicoes-ES
dc.subjecttasa de crecimientoes-ES
dc.subjecttasa fagocíticaes-ES
dc.subjectsupervivenciaes-ES
dc.titleBiological, nutritional, and hematoimmune response in juvenile Cherax quadricarinatus (Decapoda: Parastacidae) fed with probiotic mixtureen-US
dc.titleRespuesta biológica, nutricional y hematoinmune en juveniles Cherax quadricarinatus (Decapoda: Parastacidae) alimentados con mezcla probióticaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución