Efecto del palmiste en la nutrición de alevines de tilapia (Oreochromis niloticus)

dc.creatorBotello-León, Aroldo
dc.creatorMartínez-Aguilar, Yordan
dc.creatorViana, María Teresa
dc.creatorOrtega-Ojeda, Marcos
dc.creatorMorán-Montaño, Charles
dc.creatorPérez-Corría, Kirenia
dc.creatorMéndez-Martínez, Yuniel
dc.creatorVelázquez-Martí, Borja
dc.date2022-05-15
dc.date.accessioned2022-12-15T14:43:48Z
dc.date.available2022-12-15T14:43:48Z
dc.identifierhttps://revistamvz.unicordoba.edu.co/article/view/2527
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5353498
dc.descriptionObjective. To determine the response of the productive indicators when including palm (Elaeis guineensis) kernel cake (PKC) in diets for the nutrition of tilapia fry (Oreochromis niloticus). Material and methods. Three hundred sex-reversed males of tilapia (4.89 ± 0.09 g) were used and distributed according to a completely random design for 60 days, in three replicates per treatment (20 fish per replicate). The PKC was used to formulate five diets isoproteic (30.64%), isolipidics (7.38%) and isoenergetic (11.84 MJ kg-1 of feed), control (T0), 5% (T5); 10% (T10); 15% (T15), and 20% (T20). Results. Fish fed T0, T5, and T10 treatments did not show statistical differences among groups (p>0.05), but yes with the T15 and T20 in the overall nutrient digestibility, growth, and body composition. However, the inclusion of up to 20% PKC in the diet decreased the feed cost. There is a high dependency degree between the neutral detergent fiber (%) and the apparent dry digestibility (%) and apparent protein digestibility (%) (R2 =0.732 and R2 = 0.774; p<0.000), respectively. Conclusions. The palm kernel cake can be used up to 10% on tilapia fry diets without affecting apparent nutrient digestibility, growth, and whole-body nutritional contents. The progressive inclusion of PKC in the diets decreased the feed cost for more profitable tilapia culture.en-US
dc.descriptionObjetivo. Determinar la respuesta de los indicadores productivos al incluir palmiste (Elaeis guineensis) en dietas para la nutrición de alevines de tilapia (Oreochromis niloticus). Material y métodos. Se utilizaron 300 machos masculinizados de tilapia (4,89 ± 0,09 g) y se distribuyeron bajo un diseño completamente al azar con tres repeticiones por tratamiento (20 peces por repetición). Se utilizó palmiste para formular cinco dietas isoproteicas (30,64%), isolipídicas (7,38%) e isoenergéticas (11,84 MJ kg-1 de alimento), control (T0), 5% (T5); 10% (T10); 15% (T15) y 20% (T20) para alimentar durante 60 días. Resultados. Los peces alimentados con los tratamientos T0, T5 y T10, no mostraron diferencias significativas (p> 0.05), pero sí con T15 y T20 en la digestibilidad de los nutrientes, el crecimiento y la composición del cuerpo. La inclusión de palmiste hasta el 20% de la dieta, disminuyó el costo del alimento. Se observó un alto grado de dependencia entre el contenido de fibra detergente neutro (%), la digestibilidad aparente de la materia seca (%) y la digestibilidad aparente de la proteína (%) (R2 = 0,732 y R2 = 0,774; p <0,000), respectivamente. Conclusiones. El palmiste se puede usar hasta el 10% en dietas para alevines de tilapia, sin afectar la digestibilidad aparente de los nutrientes, el crecimiento y el contenido nutricional en todo el cuerpo. La inclusión progresiva de palmiste en las dietas, disminuyó el costo del alimento, para un cultivo de tilapia más rentable.es-ES
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/xml
dc.formataudio/mpeg
dc.formataudio/mpeg
dc.languagespa
dc.languageeng
dc.publisherUniversidad de Córdobaes-ES
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2527/4036
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2527/4037
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2527/4691
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2527/4692
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2527/4693
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2527/4694
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2527/4038
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2527/4039
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/2527/4040
dc.relation/*ref*/1. Tacon AG. Trends in global aquaculture and aquafeed production: 2000–2017. Rev Fish Sci Aquac. 2020; 28(1):43-56. https://doi.org/10.1080/23308249.2019.1649634
dc.relation/*ref*/2. Kord MI, Srour TM, Omar EA, Farag AA, Nour AAM, Khalil HS. The immunostimulatory effects of commercial feed additives on growth performance, non-specific immune response, antioxidants assay, and intestinal morphometry of Nile tilapia, Oreochromis niloticus. Front Physiol. 2021; 12(627499):1-12. https://doi.org/10.3389/fphys.2021.627499
dc.relation/*ref*/3. Pinho SM, David LHC, Goddek S, Emerenciano MG, Portella MC. Integrated production of Nile tilapia juveniles and lettuce using biofloc technology. Aquacult Int. 2021; 29(1):37-56. https://doi.org/10.1007/s10499-020-00608-y
dc.relation/*ref*/4. Qureshi SS, Nizamuddin S, Baloch HA, Siddiqui TH, Mubarak NM, Griffin GJ. An overview of OPS from oil palm industry as feedstock for bio-oil production. Biomass Conv Bioref. 2019; 9:827-841. https://doi.org/10.1007/s13399-019-00381-w
dc.relation/*ref*/5. Son AR, Hyun Y, Htoo JK, Kim BG. Amino acid digestibility in copra expellers and palm kernel expellers by growing pigs. Anim Feed Sci Technol. 2014; 187(2014):91-97. https://doi.org/10.1016/j.anifeedsci.2013.09.015
dc.relation/*ref*/6. Botello AL, Martínez YA, Cotera MB, Morán CM, Ortega MO, Pérez KC, et al. Growth performance, carcass traits and economic response of broiler fed of palm kernel meal (Elaeis guineensis). Cuba J Agric Sci. 2020; 54(4):1-12. http://cjascience.com/index.php/CJAS/article/view/986
dc.relation/*ref*/7. de Melo Lisboa M, Silva RR, da Silva FF, de Carvalho GGP, da Silva JWD, Paixão TR, et al. Replacing sorghum with palm kernel cake in the diet decreased intake without altering crossbred cattle performance. Trop Anim Health Pro. 2021; 53(1):1-6. https://doi.org/10.1007/s11250-020-02460-x
dc.relation/*ref*/8. Obirikorang KA, Amisah S, Fialor SC, Skov PV. 2015. Digestibility and postprandial ammonia excretion in Nile tilapia (Oreochromis niloticus) fed diets containing different oilseed by-products. Aquacult Int. 2015; 23(5):1249-1260. https://doi.org/10.1007/s10499-015-9881-z
dc.relation/*ref*/9. Obirikorang KA, Amisah S, Agbo NW, Adjei-Boateng D, Adjei NG, Skov PV. Evaluation of Locally available Agroindustrial By-products as Partial Replacements to Fishmeal in Diets for Nile Tilapia (Oreochromis niloticus) Production in Ghana. J Anim Nutr. 2015; 1(1-2):1-9. https://doi.org/10.21767/2572-5459.100002
dc.relation/*ref*/10. Obirikorang KA, Amisah S, Fialor SC, Skov PV. Effects of dietary inclusions of oilseed meals on physical characteristics and feed intake of diets for the Nile Tilapia, Oreochromis niloticus. Aquacult Rep. 2015; 1(2015):1-7. http://dx.doi.org/10.1016/j.aqrep.2015.01.002
dc.relation/*ref*/11. Thongprajukaew K, Rodjaroen S, Tantikitti C, Kovitvadhi U. Physicochemical modifications of dietary palm kernel meal affect growth and feed utilization of Nile tilapia (Oreochromis niloticus). Anim Feed Sci Technol. 2015; 202(2015):90-99. https://doi.org/10.1016/j.anifeedsci.2015.01.010
dc.relation/*ref*/12. National Research Council (NRC). Nutrient Requirement of Fish. Committee on Animal Nutrition, Board of Agriculture, National Research Council. National Academic Press: Washington, D.C. USA; 1993. https://www.nap.edu/catalog/2115/nutrient-requirements-of-fish
dc.relation/*ref*/13. He JY, Han B, Tian LX, Yang HJ, Zeng SL, Liu YJ. The sparing effect of cystine on methionine at a constant TSAA level in practical diets of juvenile Nile tilapia Oreochromis niloticus. Aquac Res. 2016; 47(6):2031-2039. https://doi.org/10.1111/are.12657
dc.relation/*ref*/14. Makori AJ, Abuom PO, Kapiyo R, Anyona DN, Dida GO. Effect of water physic-chemical paramaters on tilapia (Oreochromis niloticus) in earthen ponds in Teso North Sub-County, Busia County. J Fish Aquat Sci. 2017; 20(30):1-10. https://doi.org/10.1186/s41240-017-0075-7
dc.relation/*ref*/15. Araiza MAF, Hernández LHH, Velázquez EAR, Reyes MLE. Effect of the substitution of fish oil with a mixture of plant-based oils in diets of rainbow trout (Oncorhynchus mykiss Walbaum) fingerlings on growth, phosphorus and nitrogen excretion. Isr J Aquacult-Bamid. 2015; 67(2015):1-9. https://doi.org/10.46989/001c.20681
dc.relation/*ref*/16. Devic E, Leschen W, Murray F, Little DC. Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing Black Soldier Fly (Hermetia illucens) larvae meal. Aquacult Nutr. 2018; 24(1):416–423. https://doi.org/10.1111/anu.12573
dc.relation/*ref*/17. Official Methods of Analysis (AOAC), 19th edn. Association of Official Analytical Chemists, Gaithersburg, Maryland, USA. 2012. https://www.techstreet.com/standards/official-methods-of-analysis-of-aoac-international-19th-edition-2012?product_id=1881941
dc.relation/*ref*/18. Van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J Dairy Sci. 1991; 74(10):3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
dc.relation/*ref*/19. Ramanathan G, Ramalakshmi P, Gopperundevi B, Suresh JI. Production Characterization and Aqua Feed Supplementation of Astaxanthin from Halobacterium salinarium. Int J Curr Microbiol App Sci. 2015; 4(3):56-63. https://www.ijcmas.com/vol-4-3/G.Ramanathan,%20et%20al.pdf
dc.relation/*ref*/20. Van Keulen J, Young BA. Evaluation of acid insoluble ash as a natural marker in ruminant digestibility studies. J Anim Sci. 1977; 44(2):282-287. https://doi.org/10.2527/jas1977.442282x
dc.relation/*ref*/21. Palupi ET, Setiawati M, Lumlertdacha S, Suprayudi MA. Growth performance, digestibility, and blood biochemical parameters of Nile tilapia (Oreochromis niloticus) reared in floating cages and fed poultry by-product meal. J Appl Aquaculture. 2019; 32(1):1-18. https://doi.org/10.1080/10454438.2019.1605324
dc.relation/*ref*/22. Mansour AT, Allam BW, Srour TM, Omar EA, Nour AAM, Khalil HS. The Feasibility of Monoculture and Polyculture of Striped Catfish and Nile Tilapia in Different Proportions and Their Effects on Growth Performance, Productivity, and Financial Revenue. J Mar Sci Eng. 2021; 9(6):1-14. https://doi.org/10.3390/jmse9060586
dc.relation/*ref*/23. Maas RM, Verdegem MC, Wiegertjes GF, Schrama JW. Carbohydrate utilisation by tilapia: a meta-analytical approach. Rev Aquacult. 2020; 12(2020):1851-1866. https://doi.org/10.1111/raq.12413
dc.relation/*ref*/24. Haidar MN, Petie M, Heinsbroek LTN, Verreth JAJ, Schrama JW. The effect of type of carbohydrate (starch vs. non-starch polysaccharides) on nutrients digestibility, energy retention and maintenance requirements in Nile tilapia. Aquaculture. 2016; 463(2016):241-247. https://doi.org/10.1016/j.aquaculture.2016.05.036
dc.relation/*ref*/25. Chen JX, Feng JY, Zhu J, Luo L, Lin SM, Wang DS, et al. Starch to protein ratios in practical diets for genetically improved farmed Nile tilapia Oreochromis niloticus: Effects on growth, body composition, peripheral glucose metabolism and glucose tolerance. Aquaculture. 2020; 515(2020):734538. https://doi.org/10.1016/j.aquaculture.2019.734538
dc.relation/*ref*/26. Kamalam BJ, Medale F, Panserat S. Utilisation of dietary carbohydrates in farmed fishes: new insights on influencing factors, biological limitations and future strategies. Aquaculture. 2017; 467(2017):3-27. https://doi.org/10.1016/j.aquaculture.2016.02.007
dc.relation/*ref*/
dc.rightsDerechos de autor 2022 Aroldo Botello-León, Yordan Martínez-Aguilar, María Teresa Viana, Marcos Ortega-Ojeda, Charles Morán-Montaño, Kirenia Pérez-Corría, Yuniel Méndez-Martínez, Borja Velázquez-Martíes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceJournal MVZ Cordoba; Vol. 27 No. 2 (2022): Revista MVZ Córdoba Volumen 27(2) Mayo-Agosto 2022; e2527en-US
dc.sourceRevista MVZ Córdoba; Vol. 27 Núm. 2 (2022): Revista MVZ Córdoba Volumen 27(2) Mayo-Agosto 2022; e2527es-ES
dc.source1909-0544
dc.source0122-0268
dc.source10.21897/rmvz.v27.n2.2022
dc.subjectaquacultureen-US
dc.subjectfeedingen-US
dc.subjectfishen-US
dc.subjectproteinen-US
dc.subjectacuiculturaes-ES
dc.subjectalimentaciónes-ES
dc.subjectpeceses-ES
dc.subjectproteínaes-ES
dc.titleEffect of palm kernel cake in the nutrition for tilapia fry (Oreochromis niloticus)en-US
dc.titleEfecto del palmiste en la nutrición de alevines de tilapia (Oreochromis niloticus)es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución