dc.contributorRocha, Josimar da Silva
dc.contributorhttp://lattes.cnpq.br/7294716557200867
dc.contributorAndrade, Thiago Pinguello de
dc.contributorhttp://lattes.cnpq.br/8824631510048176
dc.contributorRocha, Josimar da Silva
dc.contributorhttp://lattes.cnpq.br/7294716557200867
dc.contributorMartinez, André Luís Machado
dc.contributorhttp://lattes.cnpq.br/3020385248940550
dc.contributorNakaoka, Irene Naomi
dc.contributorhttp://lattes.cnpq.br/7574802319786632
dc.creatorSilva, Adilson Francisco da
dc.date.accessioned2019-10-15T14:31:00Z
dc.date.accessioned2022-12-06T15:40:32Z
dc.date.available2019-10-15T14:31:00Z
dc.date.available2022-12-06T15:40:32Z
dc.date.created2019-10-15T14:31:00Z
dc.date.issued2017-07-07
dc.identifierSILVA, Adilson Francisco da. Recorrências lineares, isometria, criptografia e outras aplicações envolvendo matrizes 2 por 2. 2017. 96 fls. Dissertação (Programa de Pós Graduação em Matemática em Rede Nacional) - Universidade Tecnológica Federal do Parará, Cornélio Procópio, 2017.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/4492
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5269085
dc.description.abstractThe present study has as its main theme to show the applications involving square matrices of order 2. To achieve the objective it is showed the definition of matrices, the operations and its properties as well as the study of transposed and invertible matrix and determinant calculation being restrict to matrices of order 2. After, we define isometrics in plain as a geometric transformation that preserves distance and angles. We introduce the rotation, translation and reflection matrix presentation and insert that all isometry is ƒ (u) = T(u)+w, where T is an orthogonal linear application. We define similar matrices and their properties finding enough and necessary conditions so that a square matrix of order 2 can be diagonalizable, as well as the corresponding diagonal matrix and the conjugate matrix. We’ve calculated the nth power of a square matrix of order 2 and then we’ve solved linear relations of recurrence expressed as xn+1 = axn+bxn-1, particularly Fibonacci sequence. We’ve studied the conics represented by the equation ax2+2bxy+cy2+dx+ey+ƒ=0, where through isometries we identified as being, ellipse, hyperbola, parabola, point, line, a pair of parallel lines or concurrent and even empty set. We’ve ended the study with a cryptography using matrices multiplication and the calculation of invertible matrices.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherCornelio Procopio
dc.publisherBrasil
dc.publisherPrograma de Pós-Graduação em Matemática em Rede Nacional
dc.publisherUTFPR
dc.rightsopenAccess
dc.subjectMatrizes (Matemática)
dc.subjectIsometria (Matemática)
dc.subjectCriptografia
dc.subjectMatrices
dc.subjectIsometric (Mathematics)
dc.subjectCryptography
dc.titleRecorrências lineares, isometria, criptografia e outras aplicações envolvendo matrizes 2 por 2
dc.typemasterThesis


Este ítem pertenece a la siguiente institución