dc.contributorLopes, Fabricio Martins
dc.contributorhttp://orcid.org/0000-0002-8786-3313
dc.contributorhttp://lattes.cnpq.br/1660070580824436
dc.contributorKashiwabara, Andre Yoshiaki
dc.contributorhttp://lattes.cnpq.br/3194328548975437
dc.contributorVicente, Fabio Fernandes da Rocha
dc.contributorhttp://lattes.cnpq.br/5799700325728628
dc.contributorLopes, Fabricio Martins
dc.contributorhttp://lattes.cnpq.br/1660070580824436
dc.contributorHashimoto, Ronaldo Fumio
dc.contributorhttp://lattes.cnpq.br/9283304583756076
dc.creatorAmador, Cassio Henrique dos Santos
dc.date.accessioned2022-11-24T15:53:16Z
dc.date.accessioned2022-12-06T15:27:53Z
dc.date.available2022-11-24T15:53:16Z
dc.date.available2022-12-06T15:27:53Z
dc.date.created2022-11-24T15:53:16Z
dc.date.issued2021-12-21
dc.identifierAMADOR, Cassio Henrique dos Santos. Estudo da entropia de tsallis para a inferência de redes gênicas. 2021. Dissertação (Mestrado em Bioinformática) - Universidade Tecnológica Federal do Paraná, Cornélio Procópio, 2021.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/30174
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5266150
dc.description.abstractThe amount of information in a system can be measured by entropy. A particular case of a system is a network formed by the interaction between genes, known as gene networks. In this work we study how one type of non-extensive entropy, Tsallis entropy, can provide the greatest amount of information for gene networks, through the choice of the best non-extensive parameter q. It is shown that it is possible to obtain numerically the best parameter, and that it depends on the number of degrees of freedom of the system, in the binary case the best value being approximately 2.46. This result is tested in the context of gene network inferences, initially with logic gates, followed by artificial gene networks and finally with experimental data obtained from the DREAM4 challenge. At last, these results are compared with results from previous works, indicating the adequacy of Tsallis entropy for the inference of gene networks.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherCornelio Procopio
dc.publisherBrasil
dc.publisherPrograma de Pós-Graduação em Bioinformática
dc.publisherUTFPR
dc.rightsopenAccess
dc.subjectEntropia
dc.subjectInferência (Lógica)
dc.subjectÁlgebra booleana
dc.subjectEntropy
dc.subjectInference
dc.subjectAlgebra, Boolean
dc.titleEstudo da entropia de tsallis para a inferência de redes gênicas
dc.typemasterThesis


Este ítem pertenece a la siguiente institución