dc.contributorLüders, Ricardo
dc.contributorhttps://orcid.org/0000-0001-6483-4694
dc.contributorhttp://lattes.cnpq.br/5158617067991861
dc.contributorDelgado, Myriam Regattieri de Biase da Silva
dc.contributorhttps://orcid.org/0000-0002-2791-174X
dc.contributorhttp://lattes.cnpq.br/4166922845507601
dc.contributorTacla, Cesar Augusto
dc.contributorhttps://orcid.org/0000-0002-8244-8970
dc.contributorhttp://lattes.cnpq.br/2860342167270413
dc.contributorSantos, Cristiano Roberto dos
dc.contributorhttp://lattes.cnpq.br/8379053425317935
dc.contributorLüders, Ricardo
dc.contributorhttps://orcid.org/0000-0001-6483-4694
dc.contributorhttp://lattes.cnpq.br/5158617067991861
dc.creatorOliveira, Markos Flavio Bock Gau de
dc.date.accessioned2022-12-02T14:54:26Z
dc.date.accessioned2022-12-06T15:24:37Z
dc.date.available2022-12-02T14:54:26Z
dc.date.available2022-12-06T15:24:37Z
dc.date.created2022-12-02T14:54:26Z
dc.date.issued2022-10-05
dc.identifierOLIVEIRA, Markos Flavio Bock Gau de. Filtragem colaborativa em pesquisas de clima organizacional: predição de índice de favorabilidade e de ocorrência de comentários. 2022. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2022.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/30238
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5265385
dc.description.abstractCollaborative Filtering (CF) can be summarized as the process of predicting users preferences and deriving useful patterns by studying their activities. In this work, CF is used to predict the level of favorability and the occurrence of comments in answers to questions of large organizational climate surveys of a company. We aim to compare the performance of four algorithms based on CF (item-item, matrix factorization, logistic matrix factorization and neural collaborative filtering) and a baseline approach represented by a simple average of scores. The algorithms are used to estimate responses of low favorability, i.e., those that a respondent does not agree with a positive statement about the company. In addition, the algorithms are also used to estimate the registration of optional comments of respondents. For both problems, data from different checkpoints are used, comprising altogether more than 1.25 million employees’ responses. The data was collected from 2019 to 2021 by a large Brazilian company of technology with more than 10,000 employees. The results show that collaborative filtering approaches provide relevant alternatives for discriminating low favorability answers in the Likert scale as well as the occurrence of comments, with good quality estimates in both cases. These results can be further explored to eventually reduce the size of the questionnaires, avoiding burden phenomena faced by respondents when dealing with large surveys.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherCuritiba
dc.publisherBrasil
dc.publisherPrograma de Pós-Graduação em Engenharia Elétrica e Informática Industrial
dc.publisherUTFPR
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsopenAccess
dc.subjectCultura organizacional
dc.subjectComportamento organizacional
dc.subjectEstimativa de parâmetros
dc.subjectQuestionários
dc.subjectPesquisa organizacional
dc.subjectPesquisa - Metodologia
dc.subjectCorporate culture
dc.subjectOrganizational behavior
dc.subjectParameter estimation
dc.subjectQuestionnaires
dc.subjectOrganization - Research
dc.subjectResearch - Methodology
dc.titleFiltragem colaborativa em pesquisas de clima organizacional: predição de índice de favorabilidade e de ocorrência de comentários
dc.typemasterThesis


Este ítem pertenece a la siguiente institución