dc.contributor | Saito, Priscila Tiemi Maeda | |
dc.contributor | Saito, Priscila Tiemi Maeda | |
dc.contributor | Bugatti, Pedro Henrique | |
dc.contributor | Sanches, Silvio Ricardo Rodrigues | |
dc.creator | Toracio, Thiago Ribeiro | |
dc.date.accessioned | 2020-11-10T19:50:53Z | |
dc.date.accessioned | 2022-12-06T15:18:32Z | |
dc.date.available | 2020-11-10T19:50:53Z | |
dc.date.available | 2022-12-06T15:18:32Z | |
dc.date.created | 2020-11-10T19:50:53Z | |
dc.date.issued | 2016-06-20 | |
dc.identifier | TORACIO, Thiago Ribeiro. Reconhecimento de padrões por meio de floresta de caminhos ótimos. 2016. Trabalho de Conclusão de Curso (Graduação em Análise e Desenvolvimento de Sistemas) - Universidade Tecnológica Federal do Paraná, Cornélio Procópio, 2016. | |
dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/7449 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5263904 | |
dc.description.abstract | Currently there are large databases available, due to the advances of the acquisition and storage of this information technologies. However, there is a large amount of unlabeled data in relation to a small section labeled. Becoming necessary effective and efficient learning techniques for manipulation and analysis of this information. For learning the recognition of certain patterns is needed, which can be obtained by imaging descriptors, extracting visual properties related to color, form and texture. Some of the images extracted features may be redundant, others are more relevant to the discrimination of the images. Therefore, after the extraction of the characteristics of images, it is important to analyze and obtain the feature vector that best describes the data set by applying dimensional reduction, optimization and normalization techniques. Then, different procedures may be used (supervised, semi-unsupervised and supervised) learning. This work
aims to study and the analysis of more effective and efficient techniques for description and classification of bioimages. | |
dc.publisher | Universidade Tecnológica Federal do Paraná | |
dc.publisher | Cornelio Procopio | |
dc.publisher | Brasil | |
dc.publisher | Tecnologia em Análise e Desenvolvimento de Sistemas | |
dc.publisher | UTFPR | |
dc.rights | openAccess | |
dc.subject | Percepção de padrões | |
dc.subject | Classificação | |
dc.subject | Processamento de imagens | |
dc.subject | Pattern perception | |
dc.subject | Classification | |
dc.subject | Image processing | |
dc.title | Reconhecimento de padrões por meio de floresta de caminhos ótimos | |
dc.type | bachelorThesis | |